Advances-in-Label-Noise-Learning

Advances-in-Label-Noise-Learning

标签噪声学习最新研究进展与实践技术

这个项目全面总结了标签噪声学习领域的最新研究成果,包括论文、代码、软件工具、竞赛和教程等资源。它涵盖了群体分布鲁棒性、标签分布偏移等热点问题,并提供了真实噪声数据集和模拟框架。对于从事标签噪声学习研究的学者和工程师来说,这是一个非常有价值的知识库。

机器学习噪声标签数据集数据清洗深度学习Github开源项目

Learning-with-Noisy-Labels

A curated list of most recent papers & codes in Learning with Noisy Labels

Some recent works about group-distributional robustness, label distribution shifts, are also included.

Public Software

Docta-AI: An advanced data-centric AI platform that detects and rectifies issues in any data format (i.e., label error detection). [Website]

Competition

A Hands-on Tutorial for Learning with Noisy Labels (IJCAI 2022)[website]

Tutorial

1st Learning and Mining with Noisy Labels Challenge (IJCAI 2023)[Website][GitHub]

Content


Benchmarks & Leaderboard

Real-world noisy-label bechmarks:

DatasetLeaderboard LinkWebsitePaper
CIFAR-10N[Leaderboard][Website][Paper]
CIFAR-100N[Leaderboard][Website][Paper]
Red Stanford CarsN/A[Website][Paper]
Red Mini-ImageNetN/A[Website][Paper]
Animal-10N[Leaderboard][Website][Paper]
Food-101NN/A[Website][Paper]
Clothing1M[Leaderboard][Website][Paper]

Simulation of label noise: An Instance-Dependent Simulation Framework for Learning with Label Noise. [Paper]

This repo focus on papers after 2019, for previous works, please refer to (https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise).

Papers & Code in 2023


KDD 2023

  • [UCSC REAL Lab] To Aggregate or Not? Learning with Separate Noisy Labels. [Paper]
  • DyGen: Learning from Noisy Labels via Dynamics-Enhanced Generative Modeling. [Paper][Code]
  • Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction. [Paper]
  • Neural-Hidden-CRF: A Robust Weakly-Supervised Sequence Labeler. [Paper][Code]
  • Complementary Classifier Induced Partial Label Learning. [Paper][Code]
  • Partial-label Learning with Mixed Closed-Set and Open-Set Out-of-Candidate Examples. [Paper]
  • Weakly Supervised Multi-Label Classification of Full-Text Scientific Papers. [Paper][Code]

NeurIPS 2023

  • The Pursuit of Human Labeling: A New Perspective on Unsupervised Learning. [Paper][Code]
  • AQuA: A Benchmarking Tool for Label Quality Assessment. [Paper]
  • Efficient Testable Learning of Halfspaces with Adversarial Label Noise. [Paper]
  • Neural Relation Graph: A Unified Framework for Identifying Label Noise and Outlier Data. [Paper][Code]
  • Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy. [Paper]
  • Subclass-Dominant Label Noise: A Counterexample for the Success of Early Stopping. [Paper][Code]
  • Label Correction of Crowdsourced Noisy Annotations with an Instance-Dependent Noise Transition Model. [Paper]
  • Scale-teaching: Robust Multi-scale Training for Time Series Classification with Noisy Labels. [Paper][Code]
  • SoTTA: Robust Test-Time Adaptation on Noisy Data Streams. [Paper][Code]
  • Active Negative Loss Functions for Learning with Noisy Labels. [Paper][Code]
  • Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels. [Paper][Code]
  • Training shallow ReLU networks on noisy data using hinge loss: when do we overfit and is it benign? [Paper]
  • CSOT: Curriculum and Structure-Aware Optimal Transport for Learning with Noisy Labels. [Paper][Code]
  • Deep Insights into Noisy Pseudo Labeling on Graph Data. [Paper]
  • ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections. [Paper][Code]
  • ALIM: Adjusting Label Importance Mechanism for Noisy Partial Label Learning. [Paper][Code]
  • Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo Labeling and Multi-scale Feature Grouping. [Paper][Code]
  • Label Poisoning is All You Need. [Paper][Code]
  • SLaM: Student-Label Mixing for Distillation with Unlabeled Examples. [Paper]
  • IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers. [Paper]
  • HQA-Attack: Toward High Quality Black-Box Hard-Label Adversarial Attack on Text. [Paper][Code]

ICML 2023

  • [UCSC REAL Lab] Identifiability of Label Noise Transition Matrix. [Paper]
  • Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? [Paper]
  • Mitigating Memorization of Noisy Labels by Clipping the Model Prediction. [Paper][Code]
  • CrossSplit: Mitigating Label Noise Memorization through Data Splitting. [Paper][Code]
  • Understanding Self-Distillation in the Presence of Label Noise. [Paper]
  • RandomClassificationNoisedoesnotdefeatAllConvexPotentialBoosters IrrespectiveofModelChoice. [Paper]
  • Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach. [Paper]
  • Delving into Noisy Label Detection with Clean Data. [Paper]
  • When does Privileged information Explain Away Label Noise? [Paper]
  • Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective. [Paper][Code]
  • Promises and Pitfalls of Threshold-based Auto-labeling. [Paper]
  • Accelerating Exploration with Unlabeled Prior Data. [Paper]

CVPR 2023

  • Twin Contrastive Learning with Noisy Labels. [Paper][Code]
  • Exploring High-Quality Pseudo Masks for Weakly Supervised Instance Segmentation. [Paper][Code]
  • HandsOff: Labeled Dataset Generation with No Additional Human Annotations. [Paper][Code]
  • Learning from Noisy Labels with Decoupled Meta Label Purifier. [Paper][Code]
  • DISC: Learning from Noisy Labels via Dynamic Instance-Specific Selection and Correction. [Paper][Code]
  • Leveraging Inter-Rater Agreement for Classification in the Presence of Noisy Labels. [Paper]
  • Fine-Grained Classification with Noisy Labels. [Paper]
  • Collaborative Noisy Label Cleaner: Learning Scene-aware Trailers for Multi-modal Highlight Detection in Movies. [Paper][Code]
  • MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-supervised Object Detection. [Paper][Code]
  • OT-Filter: An Optimal Transport Filter for Learning With Noisy Labels. [Paper]
  • Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection. [Paper][Code]
  • Semi-Supervised 2D Human Pose Estimation Driven by Position Inconsistency Pseudo Label Correction Module. [Paper][Code]
  • Learning with Noisy labels via Self-supervised

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多