roberta-base-chinese-extractive-qa

roberta-base-chinese-extractive-qa

中文提取式问答模型简介与使用指南

该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。

RoBERTaHuggingface开源项目模型Github普希金训练数据腾讯云提问回答

roberta-base-chinese-extractive-qa项目介绍

项目背景

roberta-base-chinese-extractive-qa 是一个专注于中文抽取式问答的模型。该模型通过针对特定任务的微调实现了对问题的精准回答,旨在利用深度学习技术提高中文问答的效率和准确性。该模型最初由 UER-py 微调而来,并可以通过 TencentPretrain 微调,两者均基于强大的预训练模型进行优化。

使用方法

用户可以通过简单的Python代码实现对中文问题的自动回答。以下是一个简单的使用示例:

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model = AutoModelForQuestionAnswering.from_pretrained('uer/roberta-base-chinese-extractive-qa') tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-chinese-extractive-qa') QA = pipeline('question-answering', model=model, tokenizer=tokenizer) QA_input = { 'question': "著名诗歌《假如生活欺骗了你》的作者是", 'context': "普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗..." } QA(QA_input)

这种简单直观的方法使得用户可以快速上手并体验到模型的强大功能。

训练数据

模型的训练数据来源于三个主要数据集:cmrc2018webqalaisi。这些数据集提供了丰富的问答内容,为模型的高效训练奠定了基础。

训练流程

该模型使用 UER-py腾讯云 上进行微调。具体的训练过程包括:

  1. 选择预训练模型 chinese_roberta_L-12_H-768 作为基础模型。
  2. 使用最长序列长度512进行三轮微调。
  3. 在每轮训练结束时,保存开发集性能最佳的模型。

训练的参数设置如下:

python3 finetune/run_cmrc.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
                             --vocab_path models/google_zh_vocab.txt \
                             --train_path datasets/extractive_qa.json \
                             --dev_path datasets/cmrc2018/dev.json \
                             --output_model_path models/extractive_qa_model.bin \
                             --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512

在完成微调后,模型被转换为Huggingface的格式,以便用户更加便利地使用:

python3 scripts/convert_bert_extractive_qa_from_uer_to_huggingface.py --input_model_path models/extractive_qa_model.bin \
                                                                      --output_model_path pytorch_model.bin \
                                                                      --layers_num 12

参考文献

在研究和引用该项目时,可以参考以下文献:

  • Liu et al., "RoBERTa: A robustly optimized bert pretraining approach," 2019.
  • Zhao et al., "UER: An Open-Source Toolkit for Pre-training Models," EMNLP-IJCNLP 2019.
  • Zhao et al., "TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities," ACL 2023.

通过这样的开放资源和详细文档,roberta-base-chinese-extractive-qa 模型为中文问答研究提供了强有力的技术支持和工具。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多