中文GPT2预训练模型与多模态扩展简介
项目涵盖了使用UER-py和TencentPretrain的中文GPT2模型的预训练过程,从GPT2-distil到GPT2-xlarge的多个版本。借助CLUECorpusSmall数据集,这些模型有效支持中文文本生成,并扩展至多模态预训练。模型可通过UER-py Modelzoo或HuggingFace下载,用于实际文本生成应用。
gpt2-chinese-cluecorpussmall 是一系列用于生成中文文本的GPT2模型。这些模型中除了GPT2-xlarge之外,都是通过 UER-py 进行预训练的,相关介绍可以参考这篇论文。而GPT2-xlarge模型则通过 TencentPretrain 进行预训练,相关介绍详见这篇论文。这个框架继承了UER-py的功能,并将其扩展到支持超过十亿参数的多模态预训练框架。其他模型同样可以使用TencentPretrain进行预训练。
这些中国版GPT2模型可供下载,用户可以从 UER-py Modelzoo页面 或通过HuggingFace平台获取。模型详情如下:
链接 | |
---|---|
GPT2-distil | [L=6/H=768][distil] |
GPT2 | [L=12/H=768][base] |
GPT2-medium | [L=24/H=1024][medium] |
GPT2-large | [L=36/H=1280][large] |
GPT2-xlarge | [L=48/H=1600][xlarge] |
需要注意的是,6层的模型称为GPT2-distil模型,因为它遵循 distilgpt2 的配置,并且在预训练过程中不涉及较大模型的监督。
用户可以直接通过文本生成管道来使用该模型(以下为GPT2-distil的示例):
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True) [{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]
训练使用的数据集为 CLUECorpusSmall。
GPT2-xlarge模型由腾讯的TencentPretrain 进行预训练,其余模型则通过UER-py进行预训练,云平台使用的是腾讯云。训练包括多个阶段:
# 数据预处理 python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_lm_seq128_dataset.pt \ --seq_length 128 --processes_num 32 --data_processor lm # 预训练 python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/gpt2/distil_config.json \ --output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64
# 数据预处理 python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \ --seq_length 1024 --processes_num 32 --data_processor lm # 预训练 python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \ --config_path models/gpt2/distil_config.json \ --output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16
最后,将预训练模型转换为Huggingface格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6
对于GPT2-xlarge模型,类似地使用TencentPretrain进行预训练,并使用DeepSpeed进行优化。
如果您在研究中使用了此项目,请引用相关的参考文献:
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } @article{zhao2023tencentpretrain, title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities}, author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others}, journal={ACL 2023}, pages={217}, year={2023} }
通过这些复杂的预训练和优化步骤,gpt2-chinese-cluecorpussmall项目提供了多种中文文本生成模型,帮助用户轻松生成流畅且自然的中文文本。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM (大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号