高效的图像识别与特征提取
ReXNet是一款在ImageNet-1k数据集 上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。
rexnet_150.nav_in1k是一个优秀的图像分类模型,它在ImageNet-1k数据集上经过了预训练。这个模型是由论文作者专门设计的,能够提供极高效的图像分类性能。
rexnet_150.nav_in1k属于图像分类和特征骨干类型的模型。它的参数数量约为9.7百万,GMACs为0.9,激活值约为11.2百万。模型处理的图像尺寸为224x224像素。
利用Rethinking Channel Dimensions for Efficient Model Design这篇论文的研究成果,rexnet系列模型专注于通过优化通道维度,提升模型的整体效率。可以在论文链接找到更多研究细节。模型的代码和相关资源可以在GitHub上找到。
用户可以轻松地使用rexnet_150.nav_in1k进行图像分类。通过timm库,用户能够快速创建并应用这个预训练模型。以下是一个简单的例子:
from urllib.request import urlopen from PIL import Image import timm # 下载并打开图像 img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) # 创建预训练模型 model = timm.create_model('rexnet_150.nav_in1k', pretrained=True) model = model.eval() # 获取模型特定的变换设置(如标准化、调整大小) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) # 进行推理 output = model(transforms(img).unsqueeze(0)) # 获取前五名概率和分类 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
rexnet_150.nav_in1k也可以用于提取图像的特征图,这在特定的计算机视觉任务中非常有用。例如:
model = timm.create_model('rexnet_150.nav_in1k', pretrained=True, features_only=True) model = model.eval() # 执 行特征图提取 output = model(transforms(img).unsqueeze(0)) for o in output: print(o.shape)
用户还可以通过移除分类器部分来获取图像的嵌入表示:
model = timm.create_model('rexnet_150.nav_in1k', pretrained=True, num_classes=0) model = model.eval() # 输出为(1, num_features)形状的张量 output = model.forward_head(model.forward_features(transforms(img).unsqueeze(0)), pre_logits=True)
rexnet_150.nav_in1k在与其他模型的比较中表现出色,以下是部分模型对比:
模型 | top1 | top5 | 参数数量(百万) | 图像尺寸 | 裁剪比例 |
---|---|---|---|---|---|
rexnet_150.nav_in1k | 80.31 | 95.17 | 9.73 | 224 | 0.875 |
rexnet_130.nav_in1k | 79.48 | 94.68 | 7.56 | 224 | 0.875 |
rexnet_100.nav_in1k | 77.83 | 93.89 | 4.80 | 224 | 0.875 |
关于更多的模型对比数据和运行时指标,用户可以查阅timm模型结果。
如果要在学术或其他文章中引用这个模型的工作,可以使用以下格式:
@misc{han2021rethinking, title={Rethinking Channel Dimensions for Efficient Model Design}, author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, year={2021}, eprint={2007.00992}, archivePrefix={arXiv}, primaryClass={cs.CV} }
rexnet_150.nav_in1k是图像分类任务中的一个非常高效的选择,尤其适合需要在精度与计算效率之间找到平衡的应用场景。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号