
高效图像分类与特征提取模型 支持移动设备应用
MobileNet-V4图像分类模型经过ImageNet-12k预训练和ImageNet-1k精细调整,优化了参数和图像处理能力。该模型适用于移动设备,并支持特征提取和图像嵌入。凭借出色的Top-1准确率和参数效率,它在同类模型中表现突出,提供快速准确的图像识别能力。
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k是一种用于图像分类的模型,它基于MobileNet-V4架构,并通过平均池化反锯齿技术进行了优化。该模型由Ross Wightman预训练于ImageNet-12k数据集,并在ImageNet-1k数据集上进行了微调。MobileNet-V4是一种通用的移动生态系统模型,适合在移动设备上执行。
该模型可以应用于图像分类。使用timm库加载预训练的MobileNet-V4模型,并对输入的图像进行预测。模型的输出包含预测类别的概率分布,可以用于识别和分类物体。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k', pretrained=True) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
除了分类,该模型还可以用于提取特征图,这在图像分析和其他计算机视觉任务中非常有用。提取的特征图可以反映图像的局部和全局信息。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) for o in output: print(o.shape)
此外,模型支持图像嵌入输出,这对图像检索和相似性计算等应用非常有帮助。使用嵌入可以对图像进行高效的特征表示。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k', pretrained=True, num_classes=0, ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))
通过比较不同的MobileNetV4模型版本,可以发现图像的分类准确率(top1和top5)、参数数量、图像大小等差异。在此版本中,该模型实现了84.99%的top1准确率和97.294%的top5准确率,参数数量为32.59百万,测试图片大小为544。
如果需要了解更多关于该模型的信息,可以参考以下文献:


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等 增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号