tcpdump

tcpdump

开源网络数据包分析与捕获工具

tcpdump是一个开源的命令行网络数据包分析工具,支持多种操作系统。它利用libpcap库实现数据包捕获,可用于网络流量分析、问题排查和安全监控。tcpdump由Van Jacobson初创,经社区长期贡献不断完善。该工具提供详细的数据包解析功能,支持强大的过滤器语法,能够保存捕获数据供后续分析。凭借其灵活性和深度分析能力,tcpdump广泛应用于网络管理和开发领域,是专业人士不可或缺的网络诊断工具。

tcpdump网络监控数据采集libpcap开源软件Github开源项目

TCPDUMP 4.x.y by The Tcpdump Group

To report a security issue please send an e-mail to security@tcpdump.org.

To report bugs and other problems, contribute patches, request a feature, provide generic feedback etc please see the guidelines for contributing in the tcpdump source tree root.

Anonymous Git is available via

https://github.com/the-tcpdump-group/tcpdump.git

This directory contains source code for tcpdump, a tool for network monitoring and data acquisition.

Over the past few years, tcpdump has been steadily improved by the excellent contributions from the Internet community (just browse through the change log). We are grateful for all the input.

Supported platforms

In many operating systems tcpdump is available as a native package or port, which simplifies installation of updates and long-term maintenance. However, the native packages are sometimes a few versions behind and to try a more recent snapshot it will take to compile tcpdump from the source code.

tcpdump compiles and works on at least the following platforms:

  • AIX
  • DragonFly BSD
  • FreeBSD
  • Haiku
  • HP-UX 11i
  • illumos (OmniOS, OpenIndiana)
  • GNU/Hurd
  • GNU/Linux
  • {Mac} OS X / macOS
  • NetBSD
  • OpenBSD
  • Solaris
  • Windows (requires WinPcap or Npcap, and Visual Studio with CMake)

In the past tcpdump certainly or likely worked on the following platforms:

  • 4.3BSD
  • BSD/386, later BSD/OS
  • DEC OSF/1, later Digital UNIX, later Tru64 UNIX
  • DOS
  • IRIX
  • LynxOS
  • QNX
  • SINIX
  • SunOS
  • Ultrix
  • UnixWare

Dependency on libpcap

tcpdump uses libpcap, a system-independent interface for user-level packet capture. If your operating system does not provide libpcap, or if it provides a libpcap that does not support the APIs from libpcap 1.0 or later, you must first retrieve and build libpcap before building tcpdump,

Once libpcap is built (either install it or make sure it's in ../libpcap), you can build tcpdump using the procedure in the installation notes.

Origins of tcpdump

The program is loosely based on SMI's "etherfind" although none of the etherfind code remains. It was originally written by Van Jacobson as part of an ongoing research project to investigate and improve TCP and Internet gateway performance. The parts of the program originally taken from Sun's etherfind were later re-written by Steven McCanne of LBL. To insure that there would be no vestige of proprietary code in tcpdump, Steve wrote these pieces from the specification given by the manual entry, with no access to the source of tcpdump or etherfind.

formerly from Lawrence Berkeley National Laboratory Network Research Group <tcpdump@ee.lbl.gov> ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z (3.4)

See also

Richard Stevens gives an excellent treatment of the Internet protocols in his book "TCP/IP Illustrated, Volume 1". If you want to learn more about tcpdump and how to interpret its output, pick up this book.

Another tool that tcpdump users might find useful is tcpslice. It is a program that can be used to extract portions of tcpdump binary trace files.

The original LBL README by Steve McCanne, Craig Leres and Van Jacobson

This directory also contains some short awk programs intended as
examples of ways to reduce tcpdump data when you're tracking
particular network problems:

send-ack.awk
	Simplifies the tcpdump trace for an ftp (or other unidirectional
	tcp transfer).  Since we assume that one host only sends and
	the other only acks, all address information is left off and
	we just note if the packet is a "send" or an "ack".

	There is one output line per line of the original trace.
	Field 1 is the packet time in decimal seconds, relative
	to the start of the conversation.  Field 2 is delta-time
	from last packet.  Field 3 is packet type/direction.
	"Send" means data going from sender to receiver, "ack"
	means an ack going from the receiver to the sender.  A
	preceding "*" indicates that the data is a retransmission.
	A preceding "-" indicates a hole in the sequence space
	(i.e., missing packet(s)), a "#" means an odd-size (not max
	seg size) packet.  Field 4 has the packet flags
	(same format as raw trace).  Field 5 is the sequence
	number (start seq. num for sender, next expected seq number
	for acks).  The number in parens following an ack is
	the delta-time from the first send of the packet to the
	ack.  A number in parens following a send is the
	delta-time from the first send of the packet to the
	current send (on duplicate packets only).  Duplicate
	sends or acks have a number in square brackets showing
	the number of duplicates so far.

	Here is a short sample from near the start of an ftp:
		3.00    0.20   send . 512
		3.20    0.20    ack . 1024  (0.20)
		3.20    0.00   send P 1024
		3.40    0.20    ack . 1536  (0.20)
		3.80    0.40 * send . 0  (3.80) [2]
		3.82    0.02 *  ack . 1536  (0.62) [2]
	Three seconds into the conversation, bytes 512 through 1023
	were sent.  200ms later they were acked.  Shortly thereafter
	bytes 1024-1535 were sent and again acked after 200ms.
	Then, for no apparent reason, 0-511 is retransmitted, 3.8
	seconds after its initial send (the round trip time for this
	ftp was 1sec, +-500ms).  Since the receiver is expecting
	1536, 1536 is re-acked when 0 arrives.

packetdat.awk
	Computes chunk summary data for an ftp (or similar
	unidirectional tcp transfer). [A "chunk" refers to
	a chunk of the sequence space -- essentially the packet
	sequence number divided by the max segment size.]

	A summary line is printed showing the number of chunks,
	the number of packets it took to send that many chunks
	(if there are no lost or duplicated packets, the number
	of packets should equal the number of chunks) and the
	number of acks.

	Following the summary line is one line of information
	per chunk.  The line contains eight fields:
	   1 - the chunk number
	   2 - the start sequence number for this chunk
	   3 - time of first send
	   4 - time of last send
	   5 - time of first ack
	   6 - time of last ack
	   7 - number of times chunk was sent
	   8 - number of times chunk was acked
	(all times are in decimal seconds, relative to the start
	of the conversation.)

	As an example, here is the first part of the output for
	an ftp trace:

	# 134 chunks.  536 packets sent.  508 acks.
	1       1       0.00    5.80    0.20    0.20    4       1
	2       513     0.28    6.20    0.40    0.40    4       1
	3       1025    1.16    6.32    1.20    1.20    4       1
	4       1561    1.86    15.00   2.00    2.00    6       1
	5       2049    2.16    15.44   2.20    2.20    5       1
	6       2585    2.64    16.44   2.80    2.80    5       1
	7       3073    3.00    16.66   3.20    3.20    4       1
	8       3609  

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多