envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.
Creating development environments is not easy, especially with today's complex systems and dependencies. With everything from Python to CUDA, BASH scripts, and Dockerfiles constantly breaking, it can feel like a nightmare - until now!
Instantly get your environment running exactly as you need with a simple declaration of the packages you seek in build.envd and just one command: envd up!
envd?Environments built with envd provide the following features out-of-the-box:
Simple CLI and language
envd enables you to quickly and seamlessly integrate powerful CLI tools into your existing Python workflow to provision your programming environment without learning a new language or DSL.
def build(): install.python_packages(name = [ "numpy", ]) shell("zsh") config.jupyter()
Isolation, compatible with OCI image
With envd, users can create an isolated space to train, fine-tune, or serve. By utilizing sophisticated virtualization technology as well as other features like buildkit, it's an ideal solution for environment setup.
envd environment image is compatible with OCI image specification. By leveraging the power of an OCI image, you can make your environment available to anyone and everyone! Make it happen with a container registry like Harbor or Docker Hub.
Local, and cloud
envd can now be used on a hybrid platform, ranging from local machines to clusters hosted by Kubernetes. Any of these options offers an efficient and versatile way for developers to create their projects!
$ envd context use local # Run envd environments locally $ envd up ... $ envd context use cluster # Run envd environments in the cluster with the same experience $ envd up
Check out the doc for more details.
Build anywhere, faster
envd offers a wealth of advantages, such as remote build and software caching capabilities like pip index caches or apt cache, with the help of buildkit - all designed to make your life easier without ever having to step foot in the code itself!
Reusing previously downloaded packages from the PyPI/APT cache saves time and energy, making builds more efficient. No need to redownload what was already acquired before – a single download is enough for repeat usage!
With Dockerfile v1, users are unable to take advantage of PyPI caching for faster installation speeds - but envd offers this support and more!
Besides, envd also supports remote build, which means you can build your environment on a remote machine, such as a cloud server, and then push it to the registry. This is especially useful when you are working on a machine with limited resources, or when you expect a build machine with higher performance.
Knowledge reuse in your team
Forget copy-pasting Dockerfile instructions - use envd to easily build functions and reuse them by importing any Git repositories with the include function! Craft powerful custom solutions quickly.
<details> <summary><code>envdlib.tensorboard</code> is defined in <a href="https://github.com/tensorchord/envdlib/blob/main/src/monitoring.envd">github.com/tensorchord/envdlib</a></summary>envdlib = include("https://github.com/tensorchord/envdlib") def build(): base(os="ubuntu20.04", language="python") envdlib.tensorboard(host_port=8888)
</details>def tensorboard( envd_port=6006, envd_dir="/home/envd/logs", host_port=0, host_dir="/tmp", ): """Configure TensorBoard. Make sure you have permission for `host_dir` Args: envd_port (Optional[int]): port used by envd container envd_dir (Optional[str]): log storage mount path in the envd container host_port (Optional[int]): port used by the host, if not specified or equals to 0, envd will randomly choose a free port host_dir (Optional[str]): log storage mount path in the host """ install.python_packages(["tensorboard"]) runtime.mount(host_path=host_dir, envd_path=envd_dir) runtime.daemon( commands=[ [ "tensorboard", "--logdir", envd_dir, "--port", str(envd_port), "--host", "0.0.0.0", ], ] ) runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")
envdenvd can be installed with pip, or you can download the binary release directly. After the installation, please run envd bootstrap to bootstrap.
pip install --upgrade envd
After the installation, please run envd bootstrap to bootstrap:
envd bootstrap
Read the documentation for more alternative installation methods.
You can add
--dockerhub-mirroror-mflag when runningenvd bootstrap, to configure the mirror for docker.io registry:envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn
envd environmentPlease clone the envd-quick-start:
git clone https://github.com/tensorchord/envd-quick-start.git
The build manifest build.envd looks like:
def build(): base(os="ubuntu20.04", language="python3") # Configure the pip index if needed. # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple") install.python_packages(name = [ "numpy", ]) shell("zsh")
Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.
Then please run the command below to set up a new environment:
cd envd-quick-start && envd up
$ cd envd-quick-start && envd up [+] ⌚ parse build.envd and download/cache dependencies 2.8s ✅ (finished) => download oh-my-zsh 2.8s [+] 🐋 build envd environment 18.3s (25/25) ✅ (finished) => create apt source dir 0.0s => local://cache-dir 0.1s => => transferring cache-dir: 5.12MB 0.1s ... => pip install numpy 13.0s => copy /oh-my-zsh /home/envd/.oh-my-zsh 0.1s => mkfile /home/envd/install.sh 0.0s => install oh-my-zsh 0.1s => mkfile /home/envd/.zshrc 0.0s => install shell 0.0s => install PyPI packages 0.0s => merging all components into one 0.3s => => merging 0.3s => mkfile /home/envd/.gitconfig 0.0s => exporting to oci image format 2.4s => => exporting layers 2.0s => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f 0.0s => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717 0.0s => => sending tarball 0.4s envd-quick-start via Py v3.9.13 via 🅒 envd ⬢ [envd]❯ # You are in the container-based environment!
Please edit the build.envd to enable jupyter notebook:
def build(): base(os="ubuntu20.04", language="python3") # Configure the pip index if needed. # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple") install.python_packages(name = [ "numpy", ]) shell("zsh") config.jupyter()
You can get the endpoint of the running Jupyter notebook via envd envs ls.
$ envd up --detach $ envd envs ls NAME JUPYTER SSH TARGET CONTEXT IMAGE GPU CUDA CUDNN STATUS CONTAINER ID envd-quick-start http://localhost:42779 envd-quick-start.envd /home/gaocegege/code/envd-quick-start envd-quick-start:dev false <none> <none> Up 54 seconds bd3f6a729e94
Note To use the
v1config file, add# syntax=v1to the first line of yourbuild.envdfile.
| Features | v0 | v1 |
|---|---|---|
is default for envd<v1.0 | ✅ | ❌ |
| support dev | ✅ | ✅ |
| support CUDA | ✅ | ✅ |
| support serving | ⚠️ | ✅ |
| support custom base image | ⚠️ | ✅ |
| support installing multiple languages | ⚠️ | ✅ |
support moby builder | ❌ | ✅ <sup>(a)</sup> |
Note <a name="v1-moby">(a)</a> To use the
mobybuilder, you will need to create a new context withenvd context create --name moby-test --builder moby-worker --use. For more information about themobybuilder, check the issue-1693.
Important For more details, check the upgrade to v1 doc.
See envd documentation.
Please checkout ROADMAP.
We welcome all kinds of contributions from the open-source community, individuals, and partners.
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="14.28%"><a href="http://blog.duanfei.org"><img src="https://avatars.githubusercontent.com/u/16186646?v=4?s=70" width="70px;" alt=" Friends A."/><br /><sub><b> Friends A.</b></sub></a><br /><a href="https://github.com/tensorchord/envd/commits?author=shaonianche" title="Documentation">📖</a> <a href="#design-shaonianche" title="Design">🎨</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/aaronzs"><img src="https://avatars.githubusercontent.com/u/1827365?v=4?s=70" width="70px;" alt="Aaron Sun"/><br /><sub><b>Aaron Sun</b></sub></a><br /><a href="#userTesting-aaronzs" title="User Testing">📓</a> <a href="https://github.com/tensorchord/envd/commits?author=aaronzs" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/popfido"><img src="https://avatars.githubusercontent.com/u/3928409?v=4?s=70" width="70px;" alt="Aka.Fido"/><br /><sub><b>Aka.Fido</b></sub></a><br /><a href="#platform-popfido" title="Packaging/porting to new platform">📦</a> <a href="https://github.com/tensorchord/envd/commits?author=popfido" title="Documentation">📖</a> <a href="https://github.com/tensorchord/envd/commits?author=popfido" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="http://alexhxi.com"><img src="https://avatars.githubusercontent.com/u/68758451?v=4?s=70" width="70px;" alt="Alex Xi"/><br /><sub><b>Alex Xi</b></sub></a><br /><a href="https://github.com/tensorchord/envd/commits?author=AlexXi19" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/LuBingtan"><img src="https://avatars.githubusercontent.com/u/30698342?v=4?s=70" width="70px;" alt="Bingtan Lu"/><br /><sub><b>Bingtan Lu</b></sub></a><br /><a href="https://github.com/tensorchord/envd/commits?author=LuBingtan" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a

最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada 、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号