distilbert-base-fallacy-classification

distilbert-base-fallacy-classification

适用于识别14种逻辑谬误的文本分类模型

模型基于Logical Fallacy Dataset微调,支持识别14种逻辑谬误,如人身攻击、诉诸大众、情感诉求、以及循环论证等。通过transformers库的pipeline,简化文本分类过程,提升文本分析的准确率,助力识别常见推理谬误。

distilbert-base-fallacy-classification文本分类逻辑谬误训练数据集开源项目超参数模型HuggingfaceGithub

项目介绍:distilbert-base-fallacy-classification

项目背景

distilbert-base-fallacy-classification 是一个针对逻辑谬误检测任务进行了微调的模型版本。它基于 distilbert-base-uncased 模型,并使用 Logical Fallacy Dataset 数据集进行训练。此模型的主要任务是对不同类别的逻辑谬误进行文本分类。

模型描述

该模型能够识别和分类14种不同的逻辑谬误类别,具体包括:人身攻击、诉诸多数、诉诸情感、循环论证、模棱两可、信誉谬误、扩展谬误、逻辑谬误、相关性谬误、虚假因果、错误二分、错误概括、意图谬误,以及其他类别。

使用示例

一个简单的示例展示了如何使用该模型对文本进行逻辑谬误分类。以下是代码示例:

from transformers import pipeline text = "We know that the earth is flat because it looks and feels flat." model_path = "q3fer/distilbert-base-fallacy-classification" pipe = pipeline("text-classification", model=model_path, tokenizer=model_path) pipe(text)

运行以上代码后,模型将预测给定文本的逻辑谬误类别,例如识别出“循环论证”的可能性为0.9511。

完整分类示例

以下代码展示了获取推理的完整结果:

import torch from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("q3fer/distilbert-base-fallacy-classification") tokenizer = AutoTokenizer.from_pretrained("q3fer/distilbert-base-fallacy-classification") text = "We know that the earth is flat because it looks and feels flat." inputs = tokenizer(text, return_tensors='pt') with torch.no_grad(): logits = model(**inputs) scores = logits[0][0] scores = torch.nn.Softmax(dim=0)(scores) _, ranking = torch.topk(scores, k=scores.shape[0]) ranking = ranking.tolist() results = [f"{i+1}) {model.config.id2label[ranking[i]]} {scores[ranking[i]]:.4f}" for i in range(scores.shape[0])] print('\n'.join(results))

这种方法可以输出所有逻辑谬误类别及其对应的概率。例如,“循环论证”得分为0.9511,显然是最高的,表明该文本最有可能属于这一类别。

训练和评估数据

使用 Logical Fallacy Dataset 进行模型的训练和评估。数据集由Jin等人于2022年在其论文“Logical Fallacy Detection”中提出。

训练过程

微调该模型时使用了如下超参数:

  • 学习率:2e-5
  • 热身步数:0
  • 批大小:16
  • 训练轮次:8
  • 每轮批数:122
  • 总训练步数:976

通过这些设定,模型在逻辑谬误分类任务中展现出良好的性能表现。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多