泰语命名实体识别 模型,支持地名、人名等信息的高精度识别
该命名实体识别模型基于Thai NER v2.0语料库训练,专为泰语文本的实体分类而设计。通过WangchanBERTa基础模型训练,提供高精度和F1分数,确保识别结果准确。需要使用自定义代码进行推理以避免错误标签,相关信息和下载链接在HuggingFace Hub提供。
thainer-corpus-v2-base-model 是一个用于泰语命名实体识别(NER)的模型。该模型使用了 Thai NER v2.0 语料库进行训练,能够识别和分类泰语文本中的特定实体。
命名实体识别(简称NER)是一种自然语言处理技术,广泛应用于信息抽取中。它可以自动识别出文本中如人名、地名、组织名等实体。在这一项目中,开发者训练了一个针对泰语的NER模型。
模型使用了 Thai NER v2.0 语料库进行训练。训练使用的代码和数据分割可以在这里找到。训练过程中,模型基于 WangchanBERTa 基础模型进行了调整,具体的性能指标如下:
验证集性能:
测试集性能:
模型与相关数据集可以从HuggingFace Hub下载。尽管 HuggingFace 支持许多语言的推理,但是对于泰语的推理会给出错误的标签。因此,为了正确执行推理,用户需使用自定义代码。
以下是一个简单的使用示例,演示如何加载模型并进行推理:
from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification from pythainlp.tokenize import word_tokenize # 需安装 pythainlp import torch name="pythainlp/thainer-corpus-v2-base-model" tokenizer = AutoTokenizer.from_pretrained(name) model = AutoModelForTokenClassification.from_pretrained(name) sentence = "...." # 输入泰语句子 cut = word_tokenize(sentence.replace(" ", "<_>")) inputs = tokenizer(cut, is_split_into_words=True, return_tensors="pt") # 前向传播 outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"]) logits = outputs[0] predictions = torch.argmax(logits, dim=2) predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]] def fix_span_error(words, ner): _ner = [] _new_tag = [] for i, j in zip(words, _ner): i = tokenizer.decode(i) if i.isspace() and j.startswith("B-"): j = "O" if i in ['', '<s>', '</s>']: continue if i == "<_>": i = " " _new_tag.append((i, j)) return _new_tag ner_tag = fix_span_error(inputs['input_ids'][0], predicted_token_class) print(ner_tag)
如果使用了此项目的数据或模型,请引用以下参考:
Wannaphong Phatthiyaphaibun. (2022). Thai NER 2.0 (2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7761354
或者使用 BibTeX 格式:
@dataset{wannaphong_phatthiyaphaibun_2022_7761354, author = {Wannaphong Phatthiyaphaibun}, title = {Thai NER 2.0}, month = sep, year = 2022, publisher = {Zenodo}, version = {2.0}, doi = {10.5281/zenodo.7761354}, url = {https://doi.org/10.5281/zenodo.7761354} }
总的来说,thainer-corpus-v2-base-model 是一个强大的工具,用于处理泰语文本中的命名实体识别,能够在多个领域提供重要支持。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于 电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编 程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论 是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号