protobuf.js

protobuf.js

轻量高效的JavaScript Protocol Buffers库

protobuf.js是一个轻量级JavaScript Protocol Buffers库,支持Node.js和浏览器环境。它具有易用性、高性能和良好兼容性,可直接处理.proto文件。该库提供完整反射支持和灵活API,适用于多种序列化场景。无论使用.proto文件、JSON描述符还是纯反射,protobuf.js都能高效序列化和反序列化结构化数据。

protobuf.jsProtocol BuffersJavaScript序列化数据通信Github开源项目
<h1><p align="center"><img alt="protobuf.js" src="https://github.com/protobufjs/protobuf.js/raw/master/pbjs.svg" height="100" /><br/>protobuf.js</p></h1> <p align="center"> <a href="https://github.com/protobufjs/protobuf.js/actions/workflows/test.yml"><img src="https://img.shields.io/github/actions/workflow/status/protobufjs/protobuf.js/test.yml?branch=master&label=build&logo=github" alt=""></a> <a href="https://github.com/protobufjs/protobuf.js/actions/workflows/release.yaml"><img src="https://img.shields.io/github/actions/workflow/status/protobufjs/protobuf.js/release.yaml?branch=master&label=release&logo=github" alt=""></a> <a href="https://npmjs.org/package/protobufjs"><img src="https://img.shields.io/npm/v/protobufjs.svg?logo=npm" alt=""></a> <a href="https://npmjs.org/package/protobufjs"><img src="https://img.shields.io/npm/dm/protobufjs.svg?label=downloads&logo=npm" alt=""></a> <a href="https://www.jsdelivr.com/package/npm/protobufjs"><img src="https://img.shields.io/jsdelivr/npm/hm/protobufjs?label=requests&logo=jsdelivr" alt=""></a> </p>

Protocol Buffers are a language-neutral, platform-neutral, extensible way of serializing structured data for use in communications protocols, data storage, and more, originally designed at Google (see).

protobuf.js is a pure JavaScript implementation with TypeScript support for Node.js and the browser. It's easy to use, does not sacrifice on performance, has good conformance and works out of the box with .proto files!

Contents

Installation

Node.js

npm install protobufjs --save
// Static code + Reflection + .proto parser var protobuf = require("protobufjs"); // Static code + Reflection var protobuf = require("protobufjs/light"); // Static code only var protobuf = require("protobufjs/minimal");

The optional command line utility to generate static code and reflection bundles lives in the protobufjs-cli package and can be installed separately:

npm install protobufjs-cli --save-dev

Browsers

Pick the variant matching your needs and replace the version tag with the exact release your project depends upon. For example, to use the minified full variant:

<script src="//cdn.jsdelivr.net/npm/protobufjs@7.X.X/dist/protobuf.min.js"></script>
DistributionLocation
Fullhttps://cdn.jsdelivr.net/npm/protobufjs/dist/
Lighthttps://cdn.jsdelivr.net/npm/protobufjs/dist/light/
Minimalhttps://cdn.jsdelivr.net/npm/protobufjs/dist/minimal/

All variants support CommonJS and AMD loaders and export globally as window.protobuf.

Usage

Because JavaScript is a dynamically typed language, protobuf.js utilizes the concept of a valid message in order to provide the best possible performance (and, as a side product, proper typings):

Valid message

A valid message is an object (1) not missing any required fields and (2) exclusively composed of JS types understood by the wire format writer.

There are two possible types of valid messages and the encoder is able to work with both of these for convenience:

  • Message instances (explicit instances of message classes with default values on their prototype) naturally satisfy the requirements of a valid message and
  • Plain JavaScript objects that just so happen to be composed in a way satisfying the requirements of a valid message as well.

In a nutshell, the wire format writer understands the following types:

Field typeExpected JS type (create, encode)Conversion (fromObject)
s-/u-/int32<br />s-/fixed32number (32 bit integer)<code>value | 0</code> if signed<br />value >>> 0 if unsigned
s-/u-/int64<br />s-/fixed64Long-like (optimal)<br />number (53 bit integer)Long.fromValue(value) with long.js<br />parseInt(value, 10) otherwise
float<br />doublenumberNumber(value)
boolbooleanBoolean(value)
stringstringString(value)
bytesUint8Array (optimal)<br />Buffer (optimal under node)<br />Array.<number> (8 bit integers)base64.decode(value) if a string<br />Object with non-zero .length is assumed to be buffer-like
enumnumber (32 bit integer)Looks up the numeric id if a string
messageValid messageMessage.fromObject(value)
repeated TArray<T>Copy
map<K, V>Object<K,V>Copy
  • Explicit undefined and null are considered as not set if the field is optional.
  • Maps are objects where the key is the string representation of the respective value or an 8 characters long hash string for Long-likes.

Toolset

With that in mind and again for performance reasons, each message class provides a distinct set of methods with each method doing just one thing. This avoids unnecessary assertions / redundant operations where performance is a concern but also forces a user to perform verification (of plain JavaScript objects that might just so happen to be a valid message) explicitly where necessary - for example when dealing with user input.

Note that Message below refers to any message class.

  • Message.verify(message: Object): null|string<br /> verifies that a plain JavaScript object satisfies the requirements of a valid message and thus can be encoded without issues. Instead of throwing, it returns the error message as a string, if any.

    var payload = "invalid (not an object)"; var err = AwesomeMessage.verify(payload); if (err) throw Error(err);
  • Message.encode(message: Message|Object [, writer: Writer]): Writer<br /> encodes a message instance or valid plain JavaScript object. This method does not implicitly verify the message and it's up to the user to make sure that the payload is a valid message.

    var buffer = AwesomeMessage.encode(message).finish();
  • Message.encodeDelimited(message: Message|Object [, writer: Writer]): Writer<br /> works like Message.encode but additionally prepends the length of the message as a varint.

  • Message.decode(reader: Reader|Uint8Array): Message<br /> decodes a buffer to a message instance. If required fields are missing, it throws a util.ProtocolError with an instance property set to the so far decoded message. If the wire format is invalid, it throws an Error.

    try { var decodedMessage = AwesomeMessage.decode(buffer); } catch (e) { if (e instanceof protobuf.util.ProtocolError) { // e.instance holds the so far decoded message with missing required fields } else { // wire format is invalid } }
  • Message.decodeDelimited(reader: Reader|Uint8Array): Message<br /> works like Message.decode but additionally reads the length of the message prepended as a varint.

  • Message.create(properties: Object): Message<br /> creates a new message instance from a set of properties that satisfy the requirements of a valid message. Where applicable, it is recommended to prefer Message.create over Message.fromObject because it doesn't perform possibly redundant conversion.

    var message = AwesomeMessage.create({ awesomeField: "AwesomeString" });
  • Message.fromObject(object: Object): Message<br /> converts any non-valid plain JavaScript object to a message instance using the conversion steps outlined within the table above.

    var message = AwesomeMessage.fromObject({ awesomeField: 42 }); // converts awesomeField to a string
  • Message.toObject(message: Message [, options: ConversionOptions]): Object<br /> converts a message instance to an arbitrary plain JavaScript object for interoperability with other libraries or storage. The resulting plain JavaScript object might still satisfy the requirements of a valid message depending on the actual conversion options specified, but most of the time it does not.

    var object = AwesomeMessage.toObject(message, { enums: String, // enums as string names longs: String, // longs as strings (requires long.js) bytes: String, // bytes as base64 encoded strings defaults: true, // includes default values arrays: true, // populates empty arrays (repeated fields) even if defaults=false objects: true, // populates empty objects (map fields) even if defaults=false oneofs: true // includes virtual oneof fields set to the present field's name });

For reference, the following diagram aims to display relationships between the different methods and the concept of a valid message:

<p align="center"><img alt="Toolset Diagram" src="https://protobufjs.github.io/protobuf.js/toolset.svg" /></p>

In other words: verify indicates that calling create or encode directly on the plain object will [result in a valid message respectively] succeed. fromObject, on the other hand, does conversion from a broader range of plain objects to create valid messages. (ref)

Examples

Using .proto files

It is possible to load existing .proto files using the full library, which parses and compiles the definitions to ready to use (reflection-based) message classes:

// awesome.proto package awesomepackage; syntax = "proto3"; message AwesomeMessage { string awesome_field = 1; // becomes awesomeField }
protobuf.load("awesome.proto", function(err, root) { if (err) throw err; // Obtain a message type var AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage"); // Exemplary payload var payload = { awesomeField: "AwesomeString" }; // Verify the payload if necessary (i.e. when possibly incomplete or invalid) var errMsg = AwesomeMessage.verify(payload); if (errMsg) throw Error(errMsg); // Create a new message var message = AwesomeMessage.create(payload); // or use .fromObject if conversion is necessary // Encode a message to an Uint8Array (browser) or Buffer (node) var buffer = AwesomeMessage.encode(message).finish(); // ... do something with buffer // Decode an Uint8Array (browser) or Buffer (node) to a message var message = AwesomeMessage.decode(buffer); // ... do something with message // If the application uses length-delimited buffers, there is also encodeDelimited and decodeDelimited. // Maybe convert the message back to a plain object var object = AwesomeMessage.toObject(message, { longs: String, enums: String, bytes: String, // see ConversionOptions }); });

Additionally, promise syntax can be used by omitting the callback, if preferred:

protobuf.load("awesome.proto") .then(function(root) { ... });

Using JSON descriptors

The library utilizes JSON descriptors that are equivalent to a .proto definition. For example, the following is identical to the .proto definition seen above:

// awesome.json { "nested": { "awesomepackage": { "nested": { "AwesomeMessage": { "fields": { "awesomeField": { "type": "string", "id": 1 } } } } } } }

JSON descriptors closely resemble the internal reflection structure:

Type (T)ExtendsType-specific properties
ReflectionObjectoptions
NamespaceReflectionObjectnested
RootNamespacenested
TypeNamespacefields
EnumReflectionObjectvalues
FieldReflectionObjectrule, type, id
MapFieldFieldkeyType
OneOfReflectionObjectoneof (array of field names)
ServiceNamespacemethods
MethodReflectionObjecttype, requestType, responseType, requestStream, responseStream
  • Bold properties are required. Italic types are abstract.
  • T.fromJSON(name, json) creates the respective reflection object from a JSON descriptor
  • T#toJSON() creates a JSON descriptor from the respective reflection object (its name is used as the key within the parent)

Exclusively using JSON descriptors instead of .proto files enables the use of just the light library (the parser isn't required in this case).

A JSON descriptor can either be loaded the usual way:

protobuf.load("awesome.json", function(err, root) { if (err) throw err; // Continue at "Obtain a message type" above });

Or it can be loaded inline:

var jsonDescriptor = require("./awesome.json"); // exemplary for node var root = protobuf.Root.fromJSON(jsonDescriptor); // Continue at "Obtain a message type" above

Using reflection only

Both the full and the light library include full reflection support. One could, for example, define the .proto definitions seen in the examples above using just reflection:

... var Root = protobuf.Root, Type = protobuf.Type, Field = protobuf.Field; var AwesomeMessage = new Type("AwesomeMessage").add(new Field("awesomeField", 1, "string")); var root = new Root().define("awesomepackage").add(AwesomeMessage); // Continue at "Create a new message" above ...

Detailed information on the reflection structure is available within the API documentation.

Using custom classes

Message classes can also be extended with custom functionality and it is also possible to register a custom constructor with a reflected message type:

... // Define a custom constructor function AwesomeMessage(properties) { // custom initialization code ... } // Register the custom constructor with its reflected type (*) root.lookupType("awesomepackage.AwesomeMessage").ctor = AwesomeMessage; // Define custom functionality AwesomeMessage.customStaticMethod = function() { ... }; AwesomeMessage.prototype.customInstanceMethod = function() { ... }; // Continue at "Create a new message" above

(*) Besides referencing its reflected type through AwesomeMessage.$type and AwesomeMesage#$type, the respective custom class is automatically populated with:

  • AwesomeMessage.create
  • AwesomeMessage.encode and AwesomeMessage.encodeDelimited
  • AwesomeMessage.decode and AwesomeMessage.decodeDelimited
  • AwesomeMessage.verify
  • AwesomeMessage.fromObject, AwesomeMessage.toObject and AwesomeMessage#toJSON

Afterwards, decoded messages of this type are instanceof AwesomeMessage.

Alternatively, it is also possible to reuse and extend the internal constructor if custom initialization code is not required:

... // Reuse the internal constructor var AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage").ctor; // Define custom functionality AwesomeMessage.customStaticMethod = function() { ... }; AwesomeMessage.prototype.customInstanceMethod = function() { ... }; // Continue at "Create a new message" above

Using services

The library also supports consuming services but it doesn't make any assumptions about the actual transport channel. Instead, a user must provide a suitable RPC implementation, which is an asynchronous function that takes the reflected service method, the binary request and a node-style callback as its parameters:

function rpcImpl(method, requestData, callback) { // perform the request using an HTTP request or a WebSocket for example var responseData = ...; // and call the callback with the binary response afterwards: callback(null, responseData); }

Below is a working example with a typescript implementation using grpc npm package.

const grpc = require('grpc') const Client = grpc.makeGenericClientConstructor({}) const client = new Client( grpcServerUrl, grpc.credentials.createInsecure() ) const rpcImpl = function(method, requestData, callback) { client.makeUnaryRequest( method.name, arg => arg, arg => arg, requestData, callback ) }

Example:

//

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多