跨平台高效搜索的稀疏检索模型
此开源项目展示了一个学习型稀疏检索模型,通过将查询和文档编码为稀疏向量,提供高效的搜索解决方案。模型在MS MARCO数据集上进行训练,并在BEIR基准测试中展示了优良的搜索相关性与推理速度。支持OpenSearch神经稀疏功能,能与Lucene倒排索引结合,进行高效的索引与搜索。该项目提供多个模型版本,适应不同的数据集与应用需求。使用者能在OpenSearch集群内或通过HuggingFace模型API进行模型的外部运行。
OpenSearch Neural Sparse Encoding V1 是一个学习稀疏检索模型,旨在提高搜索的相关性和效率。该模型能将查询和文档编码成 30522 维的稀疏向量,其中每一个非零维度对应词汇表中的一个词符,其权重则表示该词符的重要性。
在选择模型时,应考虑搜索相关性、模型推理和检索效率(如 FLOPS,浮点运算次数)。通过在 BEIR 基准测试的子集中测试模型的零样本性能,v2 系列的模型整体上比 v1 系列在搜索相关性、效率和推理速度上表现更好。
以下是一些不同版本模型的比较:
模型 | 可用于检索(无推理) | 模型参数 | 平均 NDCG@10 | 平均 FLOPS |
---|---|---|---|---|
opensearch-neural-sparse-encoding-v1 | 133M | 0.524 | 11.4 | |
opensearch-neural-sparse-encoding-v2-distill | 67M | 0.528 | 8.3 | |
opensearch-neural-sparse-encoding-doc-v1 | ✔️ | 133M | 0.490 | 2.3 |
opensearch-neural-sparse-encoding-doc-v2-distill | ✔️ | 67M | 0.504 | 1.8 |
opensearch-neural-sparse-encoding-doc-v2-mini | ✔️ | 23M | 0.497 | 1.7 |
而 v1 模型在一些特定数据集上的具体表现差异可能不同,用户可以根据实际需求进行选择。
该模型基于 MS MARCO 数据集进行训练。模型的一个核心功能是支持使用 OpenSearch 的高层 API,通过 Lucene 倒排索引进行学习的稀疏检索。具体可以参考OpenSearch Neural Sparse 文档。
模型可以在 OpenSearch 集群内运行,也可以通过 HuggingFace 的 API 在集群外 使用。模型能够将稠密向量转换为稀疏向量,并通过向量的点积计算查询和文档之间的相似度。
一个简单的 Python 示例展示了如何使用该模型:
import itertools import torch from transformers import AutoModelForMaskedLM, AutoTokenizer # 加载模型 model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v1") tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v1") query = "What's the weather in ny now?" document = "Currently New York is rainy." # 编码查询和文档 feature = tokenizer([query, document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) output = model(**feature)[0] # 获得稀疏向量并计算相似度 sparse_vector = get_sparse_vector(feature, output) sim_score = torch.matmul(sparse_vector[0], sparse_vector[1]) print(sim_score) # 输出一个相似度得分 # 转换稀疏向量为字典形式以便分析 query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector) # 展示查询和文档中每个词符的权重 for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True): if token in document_query_token_weight: print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
在详细的搜索相关性指标中,不同模型在多个数据集上的表现如下:
模型 | 平均 | Trec Covid | NFCorpus | NQ | HotpotQA | FiQA | ArguAna | Touche | DBPedia | SCIDOCS | FEVER | 气候 FEVER | SciFact | Quora |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
opensearch-neural-sparse-encoding-v1 | 0.524 | 0.771 | 0.360 | 0.553 | 0.697 | 0.376 | 0.508 | 0.278 | 0.447 | 0.164 | 0.821 | 0.263 | 0.723 | 0.856 |
本项目基于 Apache v2.0 License 开放。
版权所有 OpenSearch 贡献者。详情参阅NOTICE 文档。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一 键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号