python -m pip install bota botasaurus botasaurus-api botasaurus-requests botasaurus-driver bota botasaurus-proxy-authentication botasaurus-server --upgrade
.How wonderful that of all the web scraping tools out there, you chose to learn about Botasaurus. Congratulations!
And now that you are here, you are in for an exciting, unusual and rewarding journey that will make your web scraping life a lot, lot easier.
Now, let me tell you in bullet points about Botasaurus. (Because as per the marketing gurus, YOU as a member of Developer Tribe have a VERY short attention span.)
So, what is Botasaurus?
Botasaurus is an all-in-one web scraping framework that enables you to build awesome scrapers in less time, less code, and with more fun.
A Web Scraping Magician has put all his web scraping experience and best practices into Botasaurus to save you hundreds of hours of Development Time!
Now, for the magical powers awaiting you after learning Botasaurus:
Save up to 97%, yes 97% on browser proxy costs by using browser-based fetch requests.
Easily save hours of Development Time with easy parallelization, profiles, extensions, and proxy configuration. Botasaurus makes asynchronous, parallel scraping a child's play.
Use Caching, Sitemap, Data cleaning, and other utilities to save hours of time spent in writing and debugging code.
Easily scale your scraper to multiple machines with Kubernetes, and get your data faster than ever.
And those are just the highlights. I Mean!
There is so much more to Botasaurus, that you will be amazed at how much time you will save with it.
Let's dive right in with a straightforward example to understand Botasaurus.
In this example, we will go through the steps to scrape the heading text from https://www.omkar.cloud/.
First things first, you need to install Botasaurus. Run the following command in your terminal:
python -m pip install botasaurus
Next, let's set up the project:
mkdir my-botasaurus-project cd my-botasaurus-project code . # This will open the project in VSCode if you have it installed
Now, create a Python script named main.py
in your project directory and paste the following code:
from botasaurus.browser import browser, Driver @browser def scrape_heading_task(driver: Driver, data): # Visit the Omkar Cloud website driver.get("https://www.omkar.cloud/") # Retrieve the heading element's text heading = driver.get_text("h1") # Save the data as a JSON file in output/scrape_heading_task.json return { "heading": heading } # Initiate the web scraping task scrape_heading_task()
Let's understand this code:
scrape_heading_task
, decorated with @browser
:@browser def scrape_heading_task(driver: Driver, data):
def scrape_heading_task(driver: Driver, data):
scrape_heading_task.json
by Botasaurus:driver.get("https://www.omkar.cloud/") heading = driver.get_text("h1") return {"heading": heading}
# Initiate the web scraping task scrape_heading_task()
Time to run it:
python main.py
After executing the script, it will:
output/scrape_heading_task.json
.Now, let's explore another way to scrape the heading using the request
module. Replace the previous code in main.py
with the following:
from botasaurus.request import request, Request from botasaurus.soupify import soupify @request def scrape_heading_task(request: Request, data): # Visit the Omkar Cloud website response = request.get("https://www.omkar.cloud/") # Create a BeautifulSoup object soup = soupify(response) # Retrieve the heading element's text heading = soup.find('h1').get_text() # Save the data as a JSON file in output/scrape_heading_task.json return { "heading": heading } # Initiate the web scraping task scrape_heading_task()
In this code:
request
, which is specifically designed for making browser-like humane requests.BeautifulSoup
object using soupify()
and extract the heading.Finally, run it again:
python main.py
This time, you will observe the exact same result as before, but instead of opening a whole Browser, we are making browser-like humane HTTP requests.
Botasaurus Driver is a web automation driver like Selenium, and the single most important reason to use it is because it is truly humane, and you will not, and I repeat NOT, have any issues with accessing any website.
Plus, it is super fast to launch and use, and the API is designed by and for web scrapers, and you will love it.
Cloudflare is the most popular protection system on the web. So, let's see how Botasaurus can help you solve various Cloudflare challenges.
Connection Challenge
This is the single most popular challenge and requires making a browser-like connection with appropriate headers. It's commonly used for:
Example Page: https://www.g2.com/products/github/reviews
from botasaurus.browser import browser, Driver @browser def scrape_heading_task(driver: Driver, data): # Visit the website via Google Referrer driver.google_get("https://www.g2.com/products/github/reviews") driver.prompt() heading = driver.get_text('.product-head__title [itemprop="name"]') return heading scrape_heading_task()
from botasaurus.request import request, Request @request(max_retry=10) def scrape_heading_task(request: Request, data): response = request.get('https://www.g2.com/products/github/reviews') print(response.status_code) response.raise_for_status() return response.text scrape_heading_task()
JS with Captcha Challenge
This challenge requires performing JS computations that differentiate a Chrome controlled by Selenium/Puppeteer/Playwright from a real Chrome. It also involves solving a Captcha. It's used to for pages which are rarely but sometimes visited by people, like:
Example Page: https://www.g2.com/products/github/reviews.html?page=5&product_id=github
Using @request
does not work because although it can make browser-like HTTP requests, it cannot run JavaScript to solve the challenge.
Pass the bypass_cloudflare=True
argument to the google_get
method.
from botasaurus.browser import browser, Driver @browser def scrape_heading_task(driver: Driver, data): driver.google_get("https://www.g2.com/products/github/reviews.html?page=5&product_id=github", bypass_cloudflare=True) driver.prompt() heading = driver.get_text('.product-head__title [itemprop="name"]') return heading scrape_heading_task()
Here are some benefits of creating a scraper with a user interface:
Let's run the Botasaurus Starter Template (the recommended template for greenfield Botasaurus projects), which scrapes the heading of the provided link by following these steps:
Clone the Starter Template:
git clone https://github.com/omkarcloud/botasaurus-starter my-botasaurus-project
cd my-botasaurus-project
Install dependencies (will take a few minutes):
python -m pip install -r requirements.txt
python run.py install
Run the scraper:
python run.py
Your browser will automatically open up at http://localhost:3000/. Then, enter the link you want to scrape (e.g., https://www.omkar.cloud/) and click on the Run Button.
After some seconds, the data will be scraped.
Visit http://localhost:3000/output to see all the tasks you have started.
Go to http://localhost:3000/about to see the rendered README.md file of the project.
Finally, visit http://localhost:3000/api-integration to see how to access the Scraper via API.
The API Documentation is generated dynamically based on your Scraper's Inputs, Sorts, Filters, etc., and is unique to your Scraper.
So, whenever you need to run the Scraper via API, visit this tab and copy the code specific to your Scraper.
Creating a UI Scraper with Botasaurus is a simple 3-step process:
To understand these steps, let's go through the code of the Botasaurus Starter Template that you just ran.
In src/scrape_heading_task.py
, we define a scraping function which basically does the following:
data
object and extracts the "link".from botasaurus.request import request, Request from botasaurus.soupify import soupify @request def scrape_heading_task(request: Request, data): # Visit the Link response = request.get(data["link"]) # Create a BeautifulSoup object soup = soupify(response) # Retrieve the heading element's text heading = soup.find('h1').get_text() # Save the data as a JSON file in output/scrape_heading_task.json return { "heading": heading }
In backend/scrapers.py
, we:
Server.add_scraper()
to register the scraperfrom botasaurus_server.server import Server from src.scrape_heading_task import scrape_heading_task # Add the scraper to the server Server.add_scraper(scrape_heading_task)
In backend/inputs/scrape_heading_task.js
we:
getInput
function that takes the controls parameter/** * @typedef {import('../../frontend/node_modules/botasaurus-controls/dist/index').Controls} Controls */ /** * @param {Controls} controls */ function getInput(controls) { controls // Render a Link Input, which is required, defaults to "https://www.omkar.cloud/". .link('link', { isRequired: true, defaultValue: "https://www.omkar.cloud/" }) }
Above was a simple example; below is a real-world example with multi-text, number, switch, select, section, and other controls.
/** * @typedef {import('../../frontend/node_modules/botasaurus-controls/dist/index').Controls} Controls */ /** * @param {Controls} controls */ function getInput(controls) { controls .listOfTexts('queries', { defaultValue: ["Web Developers in Bangalore"], placeholder: "Web Developers in Bangalore", label: 'Search Queries', isRequired: true }) .section("Email and Social Links Extraction", (section) => { section.text('api_key', { placeholder: "2e5d346ap4db8mce4fj7fc112s9h26s61e1192b6a526af51n9", label: 'Email and Social Links Extraction API Key', helpText: 'Enter your API key to extract email addresses and social media links.', }) }) .section("Reviews Extraction", (section) => { section .switch('enable_reviews_extraction', { label: "Enable Reviews Extraction" }) .numberGreaterThanOrEqualToZero('max_reviews', { label: 'Max Reviews per Place (Leave empty to extract all reviews)', placeholder: 20, isShown: (data) => data['enable_reviews_extraction'], defaultValue: 20, }) .choose('reviews_sort', { label: "Sort Reviews By", isRequired: true, isShown: (data) => data['enable_reviews_extraction'], defaultValue: 'newest', options: [{ value: 'newest', label: 'Newest' }, { value: 'most_relevant', label: 'Most Relevant' }, { value: 'highest_rating', label: 'Highest Rating' }, { value: 'lowest_rating', label: 'Lowest Rating' }] }) }) .section("Language and Max Results", (section) => { section .addLangSelect() .numberGreaterThanOrEqualToOne('max_results', { placeholder: 100, label: 'Max Results per Search Query (Leave empty to extract all places)' }) }) .section("Geo Location", (section) => { section .text('coordinates', { placeholder:
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号