Mistral-Nemo-Instruct-2407-FP8

Mistral-Nemo-Instruct-2407-FP8

FP8量化技术在模型优化与部署中的应用

Mistral-Nemo-Instruct-2407-FP8通过FP8量化技术提升了模型的内存和体积效率,主要用于商业和研究。该模型适用于英语聊天助手,利用参数位数的减少节省约50%的资源。结合vLLM>=0.5.0的高效推理环境,优化部署性能。量化由AutoFP8完成,Neural Magic计划转向支持更多方案的llm-compressor。尽管量化后某些评测得分略有下降,但保持的性能恢复率使其成为资源效率化的优选方案。

Github量化模型开源项目模型优化评估部署Mistral-Nemo-Instruct-2407-FP8Huggingface

项目简介:Mistral-Nemo-Instruct-2407-FP8

模型概览

Mistral-Nemo-Instruct-2407-FP8是一款先进的语言模型,由Neural Magic公司开发,旨在为商业和研究领域提供创新的英语语言交流能力。

  • 模型架构:基于Mistral-Nemo架构,能够处理文本输入和输出。
  • 模型优化
    • 权重量化:采用FP8格式
    • 激活量化:同样采用FP8格式
  • 预期用例:主要用于类助手的聊天领域,类似于Meta-Llama-3-8B-Instruct模型。
  • 不适用范围:不可用于违法活动或违反相关法规的用途,以及非英语语言的应用。
  • 发布日期:2024年7月18日
  • 版本:1.0
  • 许可证Apache 2.0

该模型是通过对Mistral-Nemo-Instruct-2407进行量化处理而得,相较于未量化版本的平均得分71.61,本模型在OpenLLM基准测试中达到71.28。

模型优化

通过将Mistral-Nemo-Instruct-2407的权重和激活量化为FP8格式而生成此模型,适用于vLLM >= 0.5.0。此优化将每个参数的位数从16减少到8,降低了50%的磁盘空间和GPU内存需求。

量化仅涉及变压器块中的线性算子权重和激活,并采用对称每张量量化方法,使用单一线性缩放将量化的FP8权重和激活映射。 模型使用AutoFP8进行量化,包含512个UltraChat序列。

部署

使用vLLM

此模型可高效地通过vLLM后端进行部署,示例如下:

from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Mistral-Nemo-Instruct-2407-FP8" sampling_params = SamplingParams(temperature=0.3, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False) llm = LLM(model=model_id, max_model_len=4096) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text)

此外,vLLM还能兼容OpenAI的服务,详细信息可查阅vLLM文档

创建过程

此模型通过应用AutoFP8与UltraChat校准样本生成,目前Neural Magic正过渡到使用支持更多量化方案的llm-compressor。需要注意的是,transformers需从源代码构建。

from datasets import load_dataset from transformers import AutoTokenizer from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig pretrained_model_dir = "mistralai/Mistral-Nemo-Instruct-2407" quantized_model_dir = "Mistral-Nemo-Instruct-2407-FP8" tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096) tokenizer.pad_token = tokenizer.eos_token ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512)) examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds] examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda") quantize_config = BaseQuantizeConfig( quant_method="fp8", activation_scheme="static" ignore_patterns=["re:.*lm_head"], ) model = AutoFP8ForCausalLM.from_pretrained( pretrained_model_dir, quantize_config=quantize_config ) model.quantize(examples) model.save_quantized(quantized_model_dir)

评估

模型在OpenLLM排行榜任务中进行了评估,使用了lm-evaluation-harnessvLLM 引擎。需要注意的是,vllm也需从源代码构建。

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Mistral-Nemo-Instruct-2407-FP8",dtype=auto,gpu_memory_utilization=0.4,max_model_len=4096 \
  --tasks openllm \
  --batch_size auto

准确性

Open LLM排行榜评价得分

基准Mistral-Nemo-Instruct-2407Mistral-Nemo-Instruct-2407-FP8(本模型)恢复率
MMLU (5-shot)68.3568.50100.2%
ARC Challenge (25-shot)65.5364.6898.70%
GSM-8K (5-shot, strict-match)74.4573.0198.06%
Hellaswag (10-shot)84.3284.1899.83%
Winogrande (5-shot)82.1682.32100.1%
TruthfulQA (0-shot)54.8554.96100.2%
平均71.6171.2899.53%

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多