Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic是一个强大的文本生成模型,能够在多个语言中进行文本输入和输出。该模型针对文本生成任务进行了优化,适用于商业和研究用途,特别是助理类聊天应用。然而,该模型不适用于违反法律法规的用途。
该模型通过将Meta-Llama-3.1-8B-Instruct的权重和激活进行FP8量化,从而实现优化。这种量化技术能够将每个参数的比特数从16减少到8,从而大幅减少硬盘空间和GPU内存需求。
量化仅应用于transformers块内的线性操作符的权重和激活上。采用对称的每通道量化,即通过线性缩放每个输出维度来映射量化后的FP8权重和激活表示。此外,还在逐个token的动态基础上对激活进行量化。量化过程使用了LLM Compressor工具。
该模型可以通过vLLM软件后端高效部署。下列Python示例展示了如何加载和使用该模型:
from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text)
vLLM还支持与OpenAI兼容的服务。详细信息请参见文档。
这个模型的创建过程使用了LLM Compressor与UltraChat校准样本。具体代码片段如下:
import torch from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.transformers.compression.helpers import ( # noqa calculate_offload_device_map, custom_offload_device_map, ) recipe = """ quant_stage: quant_modifiers: QuantizationModifier: ignore: ["lm_head"] config_groups: group_0: weights: num_bits: 8 type: float strategy: channel dynamic: false symmetric: true input_activations: num_bits: 8 type: float strategy: token dynamic: true symmetric: true targets: ["Linear"] """ model_stub = "meta-llama/Meta-Llama-3.1-8B-Instruct" model_name = model_stub.split("/")[-1] device_map = calculate_offload_device_map( model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto" ) model = SparseAutoModelForCausalLM.from_pretrained( model_stub, torch_dtype="auto", device_map=device_map ) output_dir = f"./{model_name}-FP8-dynamic" oneshot( model=model, recipe=recipe, output_dir=output_dir, save_compressed=True, tokenizer=AutoTokenizer.from_pretrained(model_stub), )
该模型通过一系列基准测试进行了评估,包括Arena-Hard、OpenLLM v1、OpenLLM v2、HumanEval和HumanEval+。在所有情况下,模型输出都是通过vLLM引擎生成的,详细结果可在HuggingFace数据集上找到:
模型在多个基准测试中恢复性能超过100%,具体表现如下:
模型的测试结果通过一系列评估命令获得。针对每个基准的具体命令已在文档中提供,以便研究人员复现实验结果。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号