sd-controlnet-depth

sd-controlnet-depth

结合深度估计的文本到图像扩散模型

ControlNet通过深度估计条件增强了Stable Diffusion等模型,允许在个人设备和高性能集群上进行快速训练,即使数据集较小。开发者Lvmin Zhang与Maneesh Agrawala提出的模型具有灵活性,加强了扩散模型的控制方式,推进应用实现。其多种检查点以不同条件训练,提供精细的生成控制。

深度估计稳定扩散开源项目条件控制ControlNet图像生成Github模型Huggingface

项目介绍:sd-controlnet-depth

项目背景

sd-controlnet-depth是一个基于ControlNet的项目,结合了稳定扩散模型(Stable Diffusion)与深度估计条件输入。ControlNet是由Lvmin Zhang和Maneesh Agrawala提出的一种神经网络结构,用于向扩散模型添加额外的条件控制。

功能与特点

该项目的目的是实现一种能够自主学习特定任务条件的神经网络,即使在数据集较小的情况下(不超过5万),依然能进行有效的学习。以深度估计为条件输入的ControlNet,能够利用像深度图、边缘图、分割图等各种类型的数据来丰富大型扩散模型的控制方法,从而增强图像生成的功能。

模型详细信息

  • 开发者:Lvmin Zhang, Maneesh Agrawala
  • 模型类型:基于文本生成图像的扩散模型
  • 使用语言:英文
  • 许可证:CreativeML OpenRAIL M许可证
  • 更多信息:可以通过GitHub Repository和相关学术论文进一步了解。

sd-controlnet-depth模型

sd-controlnet-depth是专门针对深度估计进行训练的ControlNet版本。深度估计通过Midas算法实现,输出的是灰度图像,黑色表示深度较深的区域,白色表示较浅的区域。

应用实例

  1. 安装环境:首先需要安装diffusers和相关包。

    $ pip install diffusers transformers accelerate
  2. 运行代码:以下是一个基本的示例,展示了如何使用sd-controlnet-depth生成包含深度信息的图像。

    from transformers import pipeline from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from PIL import Image import numpy as np import torch from diffusers.utils import load_image depth_estimator = pipeline('depth-estimation') image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") image = depth_estimator(image)['depth'] image = np.array(image) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() image = pipe("Stormtrooper's lecture", image, num_inference_steps=20).images[0] image.save('./images/stormtrooper_depth_out.png')

模型训练

深度模型通过3百万对深度图像和描述进行训练,深度图像由Midas生成。使用Nvidia A100 80G GPU进行训练大约耗时500小时,基础模型为Stable Diffusion 1.5。

额外信息

更多详细信息和使用教程可以参考ControlNet的官方博客文章

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多