大规模音乐音频分类及特征提取的模型解决方案
通过对比语言音频预训练技术,CLAP模型实现高效的音频和文本特征提取和分类,适用于无监督学习环境。模型兼具SWINTransformer和RoBERTa的优点,可用来评估音频与文本间的相似性,且能满足多种音频分类和嵌入需求。
larger_clap_music是一个针对音乐优化的CLAP模型。CLAP,即对比语言-音频预训练,是一种神经网络模型,类似于CLIP用于图像的方法。该模型经过精心训练,可以处理音频与文本配对的数据,并在无需直接为特定任务优化的情况下,预测最相关的文本片段。主要技术上,CLAP模型使用SWINTransformer从日志Mel谱图输入中提取音频特征,并使用RoBERTa模型提取文本特征。随后,这些文本和音频特征被投射到相同维度的潜在空间中,并通过投影特征之间的点积计算相似度得分。
larger_clap_music模型可以用于零样本音频分类,这意味着无需额外的训练数据即可识别音频类别。在实际应用中,可以使用Python代码中的pipeline
方法,快速将音频样本分类为不同的类别。例如,给定音频样本,模型可以判断它是"狗叫声"还是"吸尘器声音"。
from datasets import load_dataset from transformers import pipeline dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/larger_clap_music") output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) print(output) >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]
除了分类功能,larger_clap_music模型还允许用户提取音频和文本的特征嵌入。通过ClapModel
和ClapProcessor
在CPU或GPU上运行模型,可以获得音频样本的特征嵌入。这样的嵌入可以应用于更复杂的音频处理任务中,如音频-文本对齐或语义分析。
在CPU上运行示例代码:
from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_music") processor = ClapProcessor.from_pretrained("laion/larger_clap_music") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt") audio_embed = model.get_audio_features(**inputs)
在GPU上运行示例代码:
from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_music").to(0) processor = ClapProcessor.from_pretrained("laion/larger_clap_music") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0) audio_embed = model.get_audio_features(**inputs)
如果在工作中使用此模型,请引用原始论文:
@misc{https://doi.org/10.48550/arxiv.2211.06687,
doi = {10.48550/ARXIV.2211.06687},
url = {https://arxiv.org/abs/2211.06687},
author = {Wu, Yusong and Chen, Ke and Zhang, Tianyu and Hui, Yuchen and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo},
keywords = {Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
title = {Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
通过该项目,开发者可以在音乐和音频分析领域实现更加高效的创新应用,特别是在需要音频与文本互动和分类的场景中。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面 对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升 开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号