
灵活高效的容器化计算集群平台 支持多种框架与加速器
Backend.AI是一个基于容器的计算集群平台,支持多种计算和机器学习框架及编程语言。平台提供CUDA GPU、ROCm GPU、TPU和IPU等异构加速器支持,可按需分配和隔离计算资源,适合多租户环境。通过REST、GraphQL和WebSocket API暴露功能,为用户提供灵活高效的计算环境。此平台集成了先进的资源调度功能,可实现按需或批量分配计算资源。Backend.AI采用容器技术实现资源隔离,确保多租户环境的安全性和效率。其开放的API架构便于与现有系统集成,为科研、教育和企业用户提供了强大而灵活的计算解决方案。
Backend.AI is a streamlined, container-based computing cluster platform that hosts popular computing/ML frameworks and diverse programming languages, with pluggable heterogeneous accelerator support including CUDA GPU, ROCm GPU, TPU, IPU and other NPUs.
It allocates and isolates the underlying computing resources for multi-tenant computation sessions on-demand or in batches with customizable job schedulers with its own orchestrator. All its functions are exposed as REST/GraphQL/WebSocket APIs.
This repository contains all open-source server-side components and the client SDK for Python as a reference implementation of API clients.
src/ai/backend/: Source codes
manager/: Managermanager/api: Manager API handlersagent/: Agentagent/docker/: Agent's Docker backendagent/k8s/: Agent's Kubernetes backendkernel/: Agent's kernel runner counterpartrunner/: Agent's in-kernel prebuilt binarieshelpers/: Agent's in-kernel helper packagecommon/: Shared utilitiesclient/: Client SDKcli/: Unified CLI for all componentsstorage/: Storage proxystorage/api: Storage proxy's manager-facing and client-facing APIsweb/: Web UI server
static/: Backend.AI WebUI release artifactsplugin/: Plugin subsystemtest/: Integration test suitetestutils/: Shared utilities used by unit testsmeta/: Legacy meta packagedocs/: Unified documentationtests/
manager/, agent/, ...: Per-component unit testsconfigs/
manager/, agent/, ...: Per-component sample configurationsdocker/: Dockerfiles for auxiliary containersfixtures/
manager/, ...: Per-component fixtures for development setup and testsplugins/: A directory to place plugins such as accelerators, monitors, etc.scripts/: Scripts to assist development workflows
install-dev.sh: The single-node development setup script from the working copystubs/: Type annotation stub packages written by ustools/: A directory to host Pants-related toolingdist/: A directory to put build artifacts (.whl files) and Pants-exported virtualenvschanges/: News fragments for towncrierpants.toml: The Pants configurationpyproject.toml: Tooling configuration (towncrier, pytest, mypy)BUILD: The root build config file**/BUILD: Per-directory build config filesBUILD_ROOT: An indicator to mark the build root directory for Pantsrequirements.txt: The unified requirements file*.lock, tools/*.lock: The dependency lock filesdocker-compose.*.yml: Per-version recommended halfstack container configsREADME.md: This fileMIGRATION.md: The migration guide for updating between major releasesVERSION: The unified version declarationServer-side components are licensed under LGPLv3 to promote non-proprietary open innovation in the open-source community while other shared libraries and client SDKs are distributed under the MIT license.
There is no obligation to open your service/system codes if you just run the server-side components as-is (e.g., just run as daemons or import the components without modification in your codes). Please contact us (contact-at-lablup-com) for commercial consulting and more licensing details/options about individual use-cases.
Run scripts/install-dev.sh after cloning this repository.
This script checks availability of all required dependencies such as Docker and bootstrap a development
setup. Note that it requires sudo and a modern Python installed in the host system based on Linux
(Debian/RHEL-likes) or macOS.
Please consult our documentation for community-supported materials. Contact the sales team (contact@lablup.com) for professional paid support and deployment options.
Backend.AI provides websocket tunneling into individual computation sessions (containers), so that users can use their browsers and client CLI to access in-container applications directly in a secure way.
Backend.AI provides an abstraction layer on top of existing network-based storages (e.g., NFS/SMB), called vfolders (virtual folders). Each vfolder works like a cloud storage that can be mounted into any computation sessions and shared between users and user groups with differentiated privileges.
It routes external API requests from front-end services to individual agents. It also monitors and scales the cluster of multiple agents (a few tens to hundreds).
src/ai/backend/manager
backendai_scheduler_v10backendai_hook_v20backendai_webapp_v20backendai_monitor_stats_v10backendai_monitor_error_v10It manages individual server instances and launches/destroys Docker containers where REPL daemons (kernels) run. Each agent on a new EC2 instance self-registers itself to the instance registry via heartbeats.
src/ai/backend/agent
backendai_accelerator_v21backendai_monitor_stats_v10backendai_monitor_error_v10It provides a unified abstraction over multiple different network storage devices with vendor-specific enhancements such as real-time performance metrics and filesystem operation acceleration APIs.
src/ai/backend/storage
It hosts the SPA (single-page application) packaged from our web UI codebase for end-users and basic administration tasks.
src/ai/backend/web
Synchronizing the static Backend.AI WebUI version:
$ scripts/download-webui-release.sh <target version to download>
Computing environment recipes (Dockerfile) to build the container images to execute on top of the Backend.AI platform.
A programmable sandbox implemented using ptrace-based system call filtering written in Rust.
A set of libc overrides for resource control and web-based interactive stdin (paired with agents).
We offer client SDKs in popular programming languages. These SDKs are freely available with MIT License to ease integration with both commercial and non-commercial software products and services.
pip install backend.ai-clientnpm install backend.ai-clientcomposer require lablup/backend.ai-clientbackendai_accelerator_v21
ai.backend.accelerator.cuda: CUDA accelerator pluginai.backend.accelerator.cuda (mock): CUDA mockup plugin
ai.backend.accelerator.rocm: ROCm accelerator pluginbackendai_monitor_stats_v10
ai.backend.monitor.stats
backendai_monitor_error_v10
ai.backend.monitor.error
These components still exist but are no longer actively maintained.
The front-end support libraries to handle multi-media outputs (e.g., SVG plots, animated vector graphics)
lablup) is installed inside kernel containers.We now recommend using in-kernel applications such as Jupyter Lab, Visual Studio Code Server, or native SSH connection to kernels via our client SDK or desktop apps.
| Backend.AI Core Version | Python Version | Pantsbuild version |
|---|---|---|
| 24.03.x / 24.09.x | 3.12.x | 2.21.x |
| 23.03.x / 23.09.x | 3.11.x | 2.19.x |
| 22.03.x / 22.09.x | 3.10.x | |
| 21.03.x / 21.09.x | 3.8.x |
Refer to LICENSE file.


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号