
快速文本重排序解决方案,支持最长8192个token处理
jina-reranker-v1-tiny-en在JinaBERT模型基础上通过知识蒸馏技术实现高效文本重排序,支持最长8192个token的处理,适用于高速度需求场景,并确保结果的准确性。提供多种接入方式,包括Jina AI Reranker API、sentence-transformers库及transformers.js等。该模型表现优异,确保搜索结果的相关性和准确性。
jina-reranker-v1-tiny-en是一个专为极快的重新排序而设计的模型,同时保持具有竞争力的性能。这个模型使用JinaBERT作为其基础。JinaBERT是BERT架构的一种独特变体,支持ALiBi的对称双向变体。这样的设计允许jina-reranker-v1-tiny-en处理比其他重新排序模型更长的文本序列,最多可达8,192个标记(tokens)。
为了实现速度的提升,jina-reranker-v1-tiny-en使用了一种称为知识蒸馏的技术。这种技术通过让一个复杂但较慢的模型(如原始的jina-reranker-v1-base-en)充当教师,把知识凝聚到一个较小但更快的学生模型中。这个学生模型保留了大部分教师模型的知识,使其能在极短时间内提供相似的准确性。
以下是此项目提供的重新排序模型的对比:
| 模型名称 | 层数 | 隐藏尺寸 | 参数量(百万) |
|---|---|---|---|
| jina-reranker-v1-base-en | 12 | 768 | 137.0 |
| jina-reranker-v1-turbo-en | 6 | 384 | 37.8 |
| jina-reranker-v1-tiny-en | 4 | 384 | 33.0 |
从中可以看出,jina-reranker-v1-turbo-en采用了6层和37.8百万参数,为快速搜索和重新排序提供了平衡方案。而jina-reranker-v1-tiny-en则进一步强化了速度,凭借其4层和33.0百万参数结构,达到了最快的推理速度,适合于对绝对最高的准确性要求较低的场景。
curl https://api.jina.ai/v1/rerank \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{ "model": "jina-reranker-v1-tiny-en", "query": "Organic skincare products for sensitive skin", "documents": [ "Eco-friendly kitchenware for modern homes", "Biodegradable cleaning supplies for eco-conscious consumers", "Organic cotton baby clothes for sensitive skin", "Natural organic skincare range for sensitive skin", "Tech gadgets for smart homes: 2024 edition", "Sustainable gardening tools and compost solutions", "Sensitive skin-friendly facial cleansers and toners", "Organic food wraps and storage solutions", "All-natural pet food for dogs with allergies", "Yoga mats made from recycled materials" ], "top_n": 3 }'
sentence-transformers>=0.27.0库,通过pip安装:pip install -U sentence-transformers
然后使用以下代码与模型交互:
from sentence_transformers import CrossEncoder model = CrossEncoder("jinaai/jina-reranker-v1-tiny-en", trust_remote_code=True) query = "Organic skincare products for sensitive skin" documents = [ "Eco-friendly kitchenware for modern homes", "Biodegradable cleaning supplies for eco-conscious consumers", "Organic cotton baby clothes for sensitive skin", "Natural organic skincare range for sensitive skin", "Tech gadgets for smart homes: 2024 edition", "Sustainable gardening tools and compost solutions", "Sensitive skin-friendly facial cleansers and toners", "Organic food wraps and storage solutions", "All-natural pet food for dogs with allergies", "Yoga mats made from recycled materials" ] results = model.rank(query, documents, return_documents=True, top_k=3)
transformers库通过编程方式与模型交互。!pip install transformers from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained( 'jinaai/jina-reranker-v1-tiny-en', num_labels=1, trust_remote_code=True ) query = "Organic skincare products for sensitive skin" documents = [ "Eco-friendly kitchenware for modern homes", "Biodegradable cleaning supplies for eco-conscious consumers", "Organic cotton baby clothes for sensitive skin", "Natural organic skincare range for sensitive skin", "Tech gadgets for smart homes: 2024 edition", "Sustainable gardening tools and compost solutions", "Sensitive skin-friendly facial cleansers and toners", "Organic food wraps and storage solutions", "All-natural pet food for dogs with allergies", "Yoga mats made from recycled materials" ] sentence_pairs = [[query, doc] for doc in documents] scores = model.compute_score(sentence_pairs)
transformers.js库直接在JavaScript(浏览器、Node.js、Deno等)中运行模型。通过NPM安装Transformers.js JavaScript库:
npm i @xenova/transformers
然后可以使用以下代码与模型互动:
import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers'; const model_id = 'jinaai/jina-reranker-v1-tiny-en'; const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false }); const tokenizer = await AutoTokenizer.from_pretrained(model_id); async function rank(query, documents, { top_k = undefined, return_documents = false, } = {}) { const inputs = tokenizer( new Array(documents.length).fill(query), { text_pair: documents, padding: true, truncation: true } ) const { logits } = await model(inputs); return logits.sigmoid().tolist() .map(([score], i) => ({ corpus_id: i, score, ...(return_documents ? { text: documents[i] } : {}) })).sort((a, b) => b.score - a.score).slice(0, top_k); } const query = "Organic skincare products for sensitive skin" const documents = [ "Eco-friendly kitchenware for modern homes", "Biodegradable cleaning supplies for eco-conscious consumers", "Organic cotton baby clothes for sensitive skin", "Natural organic skincare range for sensitive skin", "Tech gadgets for smart homes: 2024 edition", "Sustainable gardening tools and compost solutions", "Sensitive skin-friendly facial cleansers and toners", "Organic food wraps and storage solutions", "All-natural pet food for dogs with allergies", "Yoga mats made from recycled materials", ] const results = await rank(query, documents, { return_documents: true, top_k: 3 }); console.log(results);
jina-reranker在3个关键基准测试中进行评估,以确保顶级性能和搜索相关性。
| 模型名称 | NDCG@10 (17 BEIR数据集) | NDCG@10 (5 LoCo数据集) | 命中率 (LlamaIndex RAG) |
|---|---|---|---|
jina-reranker-v1-base-en | 52.45 | 87.31 | 85.53 |
jina-reranker-v1-turbo-en | 49.60 | 69.21 | 85.13 |
jina-reranker-v1-tiny-en | 48.54 | 70.29 | 85.00 |
mxbai-rerank-base-v1 | 49.19 | - | 82.50 |
mxbai-rerank-xsmall-v1 | 48.80 | - | 83.69 |
ms-marco-MiniLM-L-6-v2 | 48.64 | - | 82.63 |
ms-marco-MiniLM-L-4-v2 | 47.81 | - | 83.82 |
bge-reranker-base | 47.89 | - | 83.03 |
NDCG@10是衡量排名质量的一种标准,分数越高表示搜索结果越好,而命中率则衡量相关文档出现在前10个搜索结果中的百分比。对于其他模型,由于不支持超过512个标记的长文档,因此没有LoCo数据集的结果。
更多详情请参考我们的基准测试表。
欢迎 加入我们的Discord社区,与其他社区成员交流想法。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

