专注MLOps的开源持续集成工具
CML是一款专注MLOps的开源命令行工具,用于机器学习项目的持续集成和交付。它能自动化配置环境、训练评估模型、比较实验结果和监控数据变化。CML可在每次代码提交时自动执行工作流程,生成可视化报告。该工具采用GitFlow工作模式,无需额外服务即可搭建完整的机器学习平台。
What is CML? Continuous Machine Learning (CML) is an open-source CLI tool for implementing continuous integration & delivery (CI/CD) with a focus on MLOps. Use it to automate development workflows — including machine provisioning, model training and evaluation, comparing ML experiments across project history, and monitoring changing datasets.
CML can help train and evaluate models — and then generate a visual report with results and metrics — automatically on every pull request.
An
example report for a
neural style transfer model.
CML principles:
:question: Need help? Just want to chat about continuous integration for ML? Visit our Discord channel!
:play_or_pause_button: Check out our YouTube video series for hands-on MLOps tutorials using CML!
You'll need a GitLab, GitHub, or Bitbucket account to begin. Users may wish to familiarize themselves with Github Actions or GitLab CI/CD. Here, will discuss the GitHub use case.
Please see our docs on CML with GitLab CI/CD and in particular the personal access token requirement.
Please see our docs on CML with Bitbucket Cloud.
The key file in any CML project is .github/workflows/cml.yaml
:
name: your-workflow-name on: [push] jobs: run: runs-on: ubuntu-latest # optionally use a convenient Ubuntu LTS + DVC + CML image # container: ghcr.io/iterative/cml:0-dvc2-base1 steps: - uses: actions/checkout@v3 # may need to setup NodeJS & Python3 on e.g. self-hosted # - uses: actions/setup-node@v3 # with: # node-version: '16' # - uses: actions/setup-python@v4 # with: # python-version: '3.x' - uses: iterative/setup-cml@v1 - name: Train model run: | # Your ML workflow goes here pip install -r requirements.txt python train.py - name: Write CML report env: REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: | # Post reports as comments in GitHub PRs cat results.txt >> report.md cml comment create report.md
We helpfully provide CML and other useful libraries pre-installed on our
custom Docker images.
In the above example, uncommenting the field
container: ghcr.io/iterative/cml:0-dvc2-base1
) will make the runner pull the
CML Docker image. The image already has NodeJS, Python 3, DVC and CML set up on
an Ubuntu LTS base for convenience.
CML provides a number of functions to help package the outputs of ML workflows (including numeric data and visualizations about model performance) into a CML report.
Below is a table of CML functions for writing markdown reports and delivering those reports to your CI system.
Function | Description | Example Inputs |
---|---|---|
cml runner launch | Launch a runner locally or hosted by a cloud provider | See Arguments |
cml comment create | Return CML report as a comment in your GitLab/GitHub workflow | <path to report> --head-sha <sha> |
cml check create | Return CML report as a check in GitHub | <path to report> --head-sha <sha> |
cml pr create | Commit the given files to a new branch and create a pull request | <path>... |
cml tensorboard connect | Return a link to a Tensorboard.dev page | --logdir <path to logs> --title <experiment title> --md |
The cml comment create
command can be used to post reports. CML reports are
written in markdown (GitHub,
GitLab, or
Bitbucket
flavors). That means they can contain images, tables, formatted text, HTML
blocks, code snippets and more — really, what you put in a CML report is up to
you. Some examples:
:spiral_notepad: Text Write to your report using whatever method you prefer. For example, copy the contents of a text file containing the results of ML model training:
cat results.txt >> report.md
:framed_picture: Images Display images using the markdown or HTML. Note that
if an image is an output of your ML workflow (i.e., it is produced by your
workflow), it can be uploaded and included automaticlly to your CML report. For
example, if graph.png
is output by python train.py
, run:
echo "" >> report.md cml comment create report.md
:warning: Note that if you are using GitLab, you will need to create a Personal Access Token for this example to work.
:warning: The following steps can all be done in the GitHub browser interface. However, to follow along with the commands, we recommend cloning your fork to your local workstation:
git clone https://github.com/<your-username>/example_cml
.github/workflows/cml.yaml
:name: model-training on: [push] jobs: run: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 - uses: iterative/setup-cml@v1 - name: Train model env: REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: | pip install -r requirements.txt python train.py cat metrics.txt >> report.md echo "" >> report.md cml comment create report.md
In your text editor of choice, edit line 16 of train.py
to depth = 5
.
Commit and push the changes:
git checkout -b experiment git add . && git commit -m "modify forest depth" git push origin experiment
experiment
branch to
main
.Shortly, you should see a comment from github-actions
appear in the pull
request with your CML report. This is a result of the cml send-comment
function in your workflow.
This is the outline of the CML workflow:
.github/workflows/cml.yaml
file gets run, andCML functions let you display relevant results from the workflow — such as model performance metrics and visualizations — in GitHub checks and comments. What kind of workflow you want to run, and want to put in your CML report, is up to you.
In many ML projects, data isn't stored in a Git repository, but needs to be downloaded from external sources. DVC is a common way to bring data to your CML runner. DVC also lets you visualize how metrics differ between commits to make reports like this:
The .github/workflows/cml.yaml
file used to create this report is:
name: model-training on: [push] jobs: run: runs-on: ubuntu-latest container: ghcr.io/iterative/cml:0-dvc2-base1 steps: - uses: actions/checkout@v3 - name: Train model env: REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }} AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }} AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }} run: | # Install requirements pip install -r requirements.txt # Pull data & run-cache from S3 and reproduce pipeline dvc pull data --run-cache dvc repro # Report metrics echo "## Metrics" >> report.md git fetch --prune dvc metrics diff main --show-md >> report.md # Publish confusion matrix diff echo "## Plots" >> report.md echo "### Class confusions" >> report.md dvc plots diff --target classes.csv --template confusion -x actual -y predicted --show-vega main > vega.json vl2png vega.json -s 1.5 > confusion_plot.png echo "" >> report.md # Publish regularization function diff echo "### Effects of regularization" >> report.md dvc plots diff --target estimators.csv -x Regularization --show-vega main > vega.json vl2png vega.json -s 1.5 > plot.png echo "" >> report.md cml comment create report.md
:warning: If you're using DVC with cloud storage, take note of environment variables for your storage format.
There are many supported could storage providers. Here are a few examples for some of the most frequently used providers:
<details> <summary> S3 and S3-compatible storage (Minio, DigitalOcean Spaces, IBM Cloud Object Storage...) </summary># Github env: AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }} AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }} AWS_SESSION_TOKEN: ${{ secrets.AWS_SESSION_TOKEN }}
:point_right:
AWS_SESSION_TOKEN
is optional.
</details> <details> <summary> Azure </summary>:point_right:
AWS_ACCESS_KEY_ID
andAWS_SECRET_ACCESS_KEY
can also be used bycml runner
to launch EC2 instances. See [Environment Variables].
</details> <details> <summary> Aliyun </summary>env: AZURE_STORAGE_CONNECTION_STRING: ${{ secrets.AZURE_STORAGE_CONNECTION_STRING }} AZURE_STORAGE_CONTAINER_NAME: ${{ secrets.AZURE_STORAGE_CONTAINER_NAME }}
</details> <details> <summary> Google Storage </summary>env: OSS_BUCKET: ${{ secrets.OSS_BUCKET }} OSS_ACCESS_KEY_ID: ${{ secrets.OSS_ACCESS_KEY_ID }} OSS_ACCESS_KEY_SECRET: ${{ secrets.OSS_ACCESS_KEY_SECRET }} OSS_ENDPOINT: ${{ secrets.OSS_ENDPOINT }}
:warning: Normally,
GOOGLE_APPLICATION_CREDENTIALS
is the path of thejson
file containing the credentials. However in the action this secret variable is the contents of the file. Copy thejson
contents and add it as a secret.
</details> <details> <summary> Google Drive </summary>env: GOOGLE_APPLICATION_CREDENTIALS: ${{ secrets.GOOGLE_APPLICATION_CREDENTIALS }}
:warning: After configuring your Google Drive credentials you will find a
json
file atyour_project_path/.dvc/tmp/gdrive-user-credentials.json
. Copy its contents and add it as a secret variable.
</details>env: GDRIVE_CREDENTIALS_DATA: ${{ secrets.GDRIVE_CREDENTIALS_DATA }}
GitHub Actions are run on GitHub-hosted runners by default. However, there are many great reasons to use your own runners: to take advantage of GPUs, orchestrate your team's shared computing resources, or train in the cloud.
:point_up: Tip! Check out the official GitHub documentation to get started setting up your own self-hosted runner.
When a workflow requires computational resources (such as GPUs), CML can
automatically allocate cloud instances using cml runner
. You can spin up
instances on AWS, Azure, GCP, or Kubernetes.
For example, the following workflow deploys a g4dn.xlarge
instance on AWS EC2
and trains a model on the instance. After the job runs, the instance
automatically shuts down.
You might notice that this workflow is quite similar to the
basic use case above. The only addition is cml runner
and a few
environment variables for passing your cloud service credentials to the
workflow.
Note that cml runner
will also automatically restart your jobs (whether from a
GitHub Actions 35-day workflow timeout
or a
AWS EC2 spot instance interruption).
name: Train-in-the-cloud on: [push] jobs: deploy-runner: runs-on: ubuntu-latest steps: - uses: iterative/setup-cml@v1 - uses: actions/checkout@v3 - name: Deploy runner on EC2 env: REPO_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }} AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }} AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }} run: | cml runner launch \ --cloud=aws \ --cloud-region=us-west \ --cloud-type=g4dn.xlarge \ --labels=cml-gpu train-model: needs: deploy-runner runs-on: [self-hosted, cml-gpu] timeout-minutes: 50400 # 35 days container: image: ghcr.io/iterative/cml:0-dvc2-base1-gpu options: --gpus all steps: - uses: actions/checkout@v3 - name: Train model env: REPO_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }} run: | pip install -r requirements.txt python train.py cat metrics.txt > report.md cml comment create report.md
In the workflow above, the deploy-runner
step launches an EC2
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要 大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号