高效处理超长文本的多功能开源模型
InternLM2-Base-7B是一个适应性强的开源模型,支持处理长达20万字的文本,具备精确的信息检索能 力,并在推理、数学、编程任务中表现优异。通过OpenCompass工具验证,其性能适合广泛应用,是研究人员和开发者的理想选择。
InternLM2 是浦语模型的第二代版本,更具创新性和适应性。该模型包括两种规模,即7B和20B参数量的模型,并开源了4种版本。这些版本具有各自的特点,适合不同的应用需求。
internlm2-base:这是基础版本,被设计成一个高质量且高度可塑的模型基础,为深度领域适配提供了一个优秀的起点。
internlm2(推荐):该版本在基础模型的基础上,进行了更深层次的特定领域语料预训练。在各种评测中表现出色,同时也保持了广泛的通用语言能力,是大多数应用场景中的推荐选择。
internlm2-chat-sft:从基础模型出发,进行了有监督的人类对齐训练,旨在增强模型的人机交互能力。
internlm2-chat(推荐):在 internlm2-chat-sft 的基础上,通过RLHF(通过人类反馈进行强化学习)进行优化,特别擅长指令遵循、共情聊天和调用工具等任务。
超长上下文支持:能够几乎完美地处理多达20万字符的超长输入,这在长文本任务,如 LongBench 和 L-Eval 中表现尤为突出。
多维性能提升:与前代模型相比,在推理、数学、代码等多个能力维度上都有显著的提升。
InternLM2-Base-7B 使用开源评测工具 OpenCompass 进行了多项重要基准测试。评测集包括 MMLU、AGIEval、BBH、GSM8K、MATH、HumanEval 和 MBPP (Sanitized)。部分评测结果如下:
评测集 | InternLM2-7B | InternLM2-Chat-7B | InternLM2-20B | InternLM2-Chat-20B | ChatGPT | GPT-4 |
---|---|---|---|---|---|---|
MMLU | 65.8 | 63.7 | 67.7 | 66.5 | 69.1 | 83.0 |
AGIEval | 49.9 | 47.2 | 53.0 | 50.3 | 39.9 | 55.1 |
BBH | 65.0 | 61.2 | 72.1 | 68.3 | 70.1 | 86.7 |
GSM8K | 70.8 | 70.7 | 76.1 | 79.6 | 78.2 | 91.4 |
MATH | 20.2 | 23.0 | 25.5 | 31.9 | 28.0 | 45.8 |
HumanEval | 43.3 | 59.8 | 48.8 | 67.1 | 73.2 | 74.4 |
MBPP(Sanitized) | 51.8 | 51.4 | 63.0 | 65.8 | 78.9 | 79.0 |
请注意,数据会因OpenCompass 版本更新而有所变化。
可以通过 Transformers 库加载 InternLM2-Base-7B 模型。以下是加载模型的代码示例:
import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-base-7b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("internlm/internlm2-base-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda() model = model.eval() inputs = tokenizer(["来到美丽的大自然"], return_tensors="pt") for k,v in inputs.items(): inputs[k] = v.cuda() gen_kwargs = {"max_length": 128, "top_p": 0.8, "temperature": 0.8, "do_sample": True, "repetition_penalty": 1.0} output = model.generate(**inputs, **gen_kwargs) output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True) print(output)
本项目的代码以 Apache-2.0 协议开源。模型权重对学术研究完全开放,并且支持免费的商业使用授权申请。其他问题或合作可通过邮箱 internlm@pjlab.org.cn 联系团队。
总体而言,InternLM2-Base-7B 为各类语言任务提供了强大而灵活的基础支持,对于有需要的开发者和研究人员,是一个非常宝贵的资源。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动 完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。 支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关 项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号