基于深度感知的说话头像视频生成技术
DaGAN是一种新型深度感知生成对抗网络,旨在生成高质量的说话头像视频。该方法利用面部深度信息提升生成效果,可适用于卡通和真人头像。在VoxCeleb1数据集上,DaGAN展现出优异性能。项目开源了预训练模型、在线演示和训练代码,便于研究复现。作为CVPR 2022的成果,DaGAN代表了说话头像生成领域的重要进展。
[论文] [项目页面] [演示] [海报视频]<br> Fa-Ting Hong, Longhao Zhang, Li Shen, Dan Xu <br> 香港科技大学<br> 阿里云
:triangular_flag_on_post: 更新
:fire::fire::white_check_mark: 2023年7月20日: 我们的新对话头工作**MCNet被ICCV2023收录。它无需训练面部深度网络,使用户测试和微调更加便捷。
:fire::fire::white_check_mark: 2022年7月26日: 发布了普通的数据并行训练脚本,因为一些研究人员告诉我他们遇到了DistributedDataParallel问题。请尝试使用这个命令训练您自己的模型。另外,我们删除了命令行"with torch.autograd.set_detect_anomaly(True)"以提高训练速度。
:fire::fire::white_check_mark: 2022年6月26日: 发布了我们的面部深度网络repo,请参考Face-Depth-Network,如果您遇到任何问题,欢迎随时给我发电子邮件。
:fire::fire::white_check_mark: 2022年6月21日: [题外话] 我正在寻找明年欧洲的研究实习/研究助理机会。如果您认为我有资格担任您的职位,请联系我。
:fire::fire::white_check_mark: 2022年5月19日: 在Voxceleb2上训练的50层深度面部模型已发布!(DaGAN的相应检查点即将发布)。点击链接
:fire::fire::white_check_mark: 2022年4月25日: 使用Gradio集成到Huggingface Spaces 🤗。试试网页演示: (GPU版本即将推出!)
:fire::fire::white_check_mark: 添加**SPADE模型**,它产生的结果更加自然。
我们现在提供了一个DaGAN的干净版本,不需要定制的CUDA扩展。<br>
克隆代码库
git clone https://github.com/harlanhong/CVPR2022-DaGAN.git cd CVPR2022-DaGAN
安装依赖包
pip install -r requirements.txt ## 安装人脸对齐库 cd face-alignment pip install -r requirements.txt python setup.py install
我们以论文版本为例。更多模型可在此处找到。
查看 config/vox-adv-256.yaml
以获取每个参数的描述。
人脸深度网络的预训练检查点和我们的DaGAN检查点可在以下链接找到: OneDrive。
推理! 要运行演示,请下载检查点并运行以下命令:
CUDA_VISIBLE_DEVICES=0 python demo.py --config config/vox-adv-256.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint --relative --adapt_scale --kp_num 15 --generator DepthAwareGenerator
结果将保存在 result.mp4
。驱动视频和源图像需要先进行裁剪才能用于我们的方法。您可以使用 python crop-video.py --inp some_youtube_video.mp4
获取一些半自动裁剪建议。它将生成使用 ffmpeg 的裁剪命令。
要在特定数据集上训练模型,请运行:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_addr="0.0.0.0" --master_port=12348 run.py --config config/vox-adv-256.yaml --name DaGAN --rgbd --batchsize 12 --kp_num 15 --generator DepthAwareGenerator
<div id="dataparallel" >或者</div>
CUDA_VISIBLE_DEVICES=0,1,2,3 python run_dataparallel.py --config config/vox-adv-256.yaml --device_ids 0,1,2,3 --name DaGAN_voxceleb2_depth --rgbd --batchsize 48 --kp_num 15 --generator DepthAwareGenerator
代码将在 log 目录中创建一个文件夹(每次运行都会创建一个新的名称特定的目录)。检查点将被保存到此文件夹中。要查看训练期间的损失值,请查看 log.txt
。
默认情况下,批量大小是针对 8 个 GeForce RTX 3090 GPU 调优的(您可以在大约 150 个 epoch 后获得最佳性能)。您可以在 .yaml
文件的 train_params 中更改批量大小。
您还可以通过运行以下命令观看训练损失:
tensorboard --logdir log/DaGAN/log
当您在训练过程中出于某些原因杀死进程时,可能会出现僵尸进程,您可以使用我们提供的工具将其杀死:
python kill_port.py PORT
将所有视频调整为相同的大小,例如 256x256,视频可以是 '.gif'、'.mp4' 或包含图像的文件夹。我们建议使用后者,对于每个视频,都要创建一个单独的文件夹,其中包含所有以 '.png' 格式的帧。这种格式是无损的,并且具有更好的 i/o 性能。
创建一个文件夹 data/dataset_name
并包含 2 个子文件夹 train
和 test
,将训练视频放在 train
中,测试视频放在 test
中。
创建一个配置文件 config/dataset_name.yaml
,在 dataset_params 中指定根目录 root_dir: data/dataset_name
。还要调整 train_params 中的 epoch 数。
我们的 DaGAN 实现受到 FOMM 的启发。我们感谢 FOMM 的作者为公众提供他们的代码。
@inproceedings{hong2022depth,
title={Depth-Aware Generative Adversarial Network for Talking Head Video Generation},
author={Hong, Fa-Ting and Zhang, Longhao and Shen, Li and Xu, Dan},
journal={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}
@article{hong2023dagan,
title={DaGAN++: Depth-Aware Generative Adversarial Network for Talking Head Video Generation},
author={Hong, Fa-Ting and and Shen, Li and Xu, Dan},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year={2023}
}
如果您有任何问题或合作需求(研究目的或商业目的),请发送电子邮件至 fhongac@cse.ust.hk
。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号