switch-base-128

switch-base-128

探索语言模型优化与参数缩放的最新进展

Switch Transformers采用专家混合(MoE)模型架构,针对掩码语言模型(MLM)任务进行训练。该模型使用稀疏多层感知器层取代传统的前馈层,提升了训练效率。在Colossal Clean Crawled Corpus上完成了高达万亿参数的预训练,表现出优于T5的微调效果,并实现了相较于T5-XXL模型的四倍加速,适合需要高效语言模型的应用。

语言模型Github开源项目专家混合专家HuggingfaceSwitch Transformers蒙面语言建模模型

switch-base-128项目介绍

项目概述

Switch-base-128项目是一种新型的“专家混合”(Mixture of Experts,MoE)语言模型,专注于通过使用“稀疏多层感知器”(Sparse MLP)层来提升模型的训练速度和性能。这一模型基于经典的T5架构,但特别之处在于将原本的前馈层替换成包含MLP专家的稀疏层。根据相关研究论文,该模型在进行微调任务时性能优于传统的T5模型,并在训练效率上实现了四倍的提升。

模型详情

使用指南

请注意,该模型的检查点是经过掩码语言建模(MLM)任务训练的,因此还未准备好直接用于下游任务。若需执行微调任务,可使用FLAN-T5模型或根据示例教程微调自己的MoE模型。

使用实例

为便于理解,这里提供了在transformers工具中使用该模型的示例:

在CPU上运行模型

from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128") model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128") input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0]))

在GPU上运行模型

from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128") model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128", device_map="auto") input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0) outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0]))

使用场景

Switch-base-128支持直接使用和下游任务应用。用户可查阅研究文章以获取更详细的信息。

偏见、风险和限制

目前,关于偏见和风险的具体信息暂时不够全面,但需根据使用情况进行相关的道德和风险评估。

训练详情

模型的训练工作基于掩码语言建模任务,训练数据来源于“巨大的干净抓取语料库”(C4)数据集,采用与T5相同的训练流程。训练过程中使用了TPU v3或v4 pod,与t5xjax框架相结合。

环境影响

计算模型的碳排放通常会参照Lacoste等人(2019)中的机器学习影响计算器进行估算。

结论

Switch-base-128项目通过采用“专家混合”的创新技术和优化的结构设计,实现了训练效率和性能的双向提升,为大规模语言模型的应用提供了更加强大的工具。用户可根据需求进行多样化的模型应用和微调,以适应不同的自然语言处理任务。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多