switch-base-128

switch-base-128

探索语言模型优化与参数缩放的最新进展

Switch Transformers采用专家混合(MoE)模型架构,针对掩码语言模型(MLM)任务进行训练。该模型使用稀疏多层感知器层取代传统的前馈层,提升了训练效率。在Colossal Clean Crawled Corpus上完成了高达万亿参数的预训练,表现出优于T5的微调效果,并实现了相较于T5-XXL模型的四倍加速,适合需要高效语言模型的应用。

语言模型Github开源项目专家混合专家HuggingfaceSwitch Transformers蒙面语言建模模型

switch-base-128项目介绍

项目概述

Switch-base-128项目是一种新型的“专家混合”(Mixture of Experts,MoE)语言模型,专注于通过使用“稀疏多层感知器”(Sparse MLP)层来提升模型的训练速度和性能。这一模型基于经典的T5架构,但特别之处在于将原本的前馈层替换成包含MLP专家的稀疏层。根据相关研究论文,该模型在进行微调任务时性能优于传统的T5模型,并在训练效率上实现了四倍的提升。

模型详情

使用指南

请注意,该模型的检查点是经过掩码语言建模(MLM)任务训练的,因此还未准备好直接用于下游任务。若需执行微调任务,可使用FLAN-T5模型或根据示例教程微调自己的MoE模型。

使用实例

为便于理解,这里提供了在transformers工具中使用该模型的示例:

在CPU上运行模型

from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128") model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128") input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0]))

在GPU上运行模型

from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128") model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128", device_map="auto") input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0) outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0]))

使用场景

Switch-base-128支持直接使用和下游任务应用。用户可查阅研究文章以获取更详细的信息。

偏见、风险和限制

目前,关于偏见和风险的具体信息暂时不够全面,但需根据使用情况进行相关的道德和风险评估。

训练详情

模型的训练工作基于掩码语言建模任务,训练数据来源于“巨大的干净抓取语料库”(C4)数据集,采用与T5相同的训练流程。训练过程中使用了TPU v3或v4 pod,与t5xjax框架相结合。

环境影响

计算模型的碳排放通常会参照Lacoste等人(2019)中的机器学习影响计算器进行估算。

结论

Switch-base-128项目通过采用“专家混合”的创新技术和优化的结构设计,实现了训练效率和性能的双向提升,为大规模语言模型的应用提供了更加强大的工具。用户可根据需求进行多样化的模型应用和微调,以适应不同的自然语言处理任务。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多