my-awesome-AI-bookmarks

my-awesome-AI-bookmarks

全面的AI学习资源库 从理论到实践的精选集合

这是一个综合性的人工智能资源库,涵盖深度学习和机器学习领域。收录了业界顶尖专家的文章、代码实现和核心概念,内容从基础理论延伸到实际应用,包括迁移学习、强化学习和自然语言处理等热门主题。项目汇集了丰富的学习材料,适合AI研究者和从业者参考使用。

深度学习机器学习TensorFlow神经网络人工智能Github开源项目

My Artificial Intelligence Bookmarks Awesome

Curated list of my reads, implementations and core concepts of Artificial Intelligence, Deep Learning, Machine Learning by best folk in the world.

🎉🎉🎉 Purchase updated list here --> AI Bookmarks

2018-2019

  • <DT><A HREF="https://deeplearningsandbox.com/how-to-use-transfer-learning-and-fine-tuning-in-keras-and-tensorflow-to-build-an-image-recognition-94b0b02444f2"> How to use transfer learning and fine-tuning in Keras and Tensorflow to build an image recognition… </A>
  • <DT><A HREF="https://medium.com/towards-data-science/how-to-deploy-machine-learning-models-with-tensorflow-part-1-make-your-model-ready-for-serving-776a14ec3198"> How to deploy Machine Learning models with TensorFlow. Part 1 — make your model ready for serving. </A>
  • <DT><A HREF="https://www.scaler.com/blog/machine-learning/#methods-of-machine-learning"> Methods of Machine Learning - Scaler Blogs </A>
  • <DT><A HREF="https://github.com/manena/image-classification-indoors-outdoors/blob/master/image-classification.ipynb"> image-classification-indoors-outdoors/image-classification.ipynb at master · manena/image-classification-indoors-outdoors </A>
  • <DT><A HREF="https://www.youtube.com/watch?v=xL-GKD49FXs"> (620) Learning to Communicate with Deep Multi-Agent Reinforcement Learning - Jakob Foerster - YouTube </A>
  • <DT><A HREF="http://machinethink.net/blog/compressing-deep-neural-nets/"> Compressing deep neural nets </A>
  • <DT><A HREF="https://eng.uber.com/neural-networks/"> Engineering Extreme Event Forecasting at Uber with Recurrent Neural Networks - Uber Engineering Blog </A>
  • <DT><A HREF="http://www.pietervanos.net/knowledge/start-python-script-from-init-d/"> Run python script from init.d </A>
  • <DT><A HREF="https://stackoverflow.com/questions/17747605/daemon-vs-upstart-for-python-script"> Daemon vs Upstart for python script - Stack Overflow </A>
  • <DT><A HREF="https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow"> Reinforcement learning for complex goals, using TensorFlow - O'Reilly Media </A>
  • <DT><A HREF="https://spectrum.ieee.org/computing/networks/blockchains-how-they-work-and-why-theyll-change-the-world"> Blockchains: How They Work and Why They’ll Change the World - IEEE Spectrum </A>
  • <DT><A HREF="http://janlosert.com/NET292-profile.pdf"> NET292.profile.indd </A>
  • <DT><A HREF="http://www.inference.vc/my-notes-on-the-numerics-of-gans/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI"> GANs are Broken in More than One Way: The Numerics of GANs </A>
  • <DT><A HREF="https://www.youtube.com/watch?v=hvIptUuUCdU"> (74) Stanford Seminar - "Deep Learning for Dummies" Carey Nachenberg of Symantec and UCLA CS - YouTube </A>
  • <DT><A HREF="https://hackernoon.com/fast-ai-what-i-learned-from-lessons-1-3-b10f9958e3ff"> Fast.ai: What I Learned from Lessons 1–3 – Hacker Noon </A>
  • <DT><A HREF="https://eng.uber.com/horovod/"> Meet Horovod: Uber's Open Source Distributed Deep Learning Framework </A>
  • <DT><A HREF="http://www.anishathalye.com/"> Home · cat /var/log/life </A>
  • <DT><A HREF="https://www.kaggle.com/huseinzol05/2d-3d-visualization-using-nce-cost"> 2D & 3D Visualization using NCE Cost | Kaggle </A>
  • <DT><A HREF="https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-of-deep-learning-20170921/"> New Theory Cracks Open the Black Box of Deep Learning | Quanta Magazine </A>
  • <DT><A HREF="https://distill.pub/2017/feature-visualization/"> Feature Visualization </A>
  • <DT><A HREF="https://software.intel.com/en-us/articles/face-it-the-artificially-intelligent-hairstylist?utm_source=taboola&utm_medium=referral&utm_campaign=AI_Student_ASMO_Q4_2017_Media_Buy"> Face It – The Artificially Intelligent Hairstylist | Intel® Software </A>
  • <DT><A HREF="https://opensource.com/article/17/11/intro-tensorflow?sc_cid=7016000000127ECAAY"> What is TensorFlow? | Opensource.com </A>
  • <DT><A HREF="https://medium.com/@surmenok/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0"> Estimating an Optimal Learning Rate For a Deep Neural Network – Medium </A>
  • <DT><A HREF="https://medium.com/@pechyonkin/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b"> Understanding Hinton’s Capsule Networks. Part I: Intuition. </A>
  • <DT><A HREF="https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952"> Capsule Networks Are Shaking up AI — Here’s How to Use Them </A>
  • <DT><A HREF="https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html"> Research Blog: Eager Execution: An imperative, define-by-run interface to TensorFlow </A>
  • <DT><A HREF="https://medium.com/intuitionmachine/google-and-ubers-best-practices-for-deep-learning-58488a8899b6"> Google and Uber’s Best Practices for Deep Learning – Intuition Machine – Medium </A>
  • <DT><A HREF="https://blog.acolyer.org/2017/10/03/tfx-a-tensorflow-based-production-scale-machine-learning-platform/"> TFX: A TensorFlow-based production scale machine learning platform | the morning paper </A>
  • <DT><A HREF="https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python"> Comprehensive data exploration with Python | Kaggle </A>
  • <DT><A HREF="https://www.dlology.com/blog/an-easy-guide-to-build-new-tensorflow-datasets-and-estimator-with-keras-model/"> An Easy Guide to build new TensorFlow Datasets and Estimator with Keras Model | DLology </A>
  • <DT><A HREF="http://amid.fish/distributed-tensorflow-a-gentle-introduction"> Distributed TensorFlow: A Gentle Introduction </A>
  • <DT><A HREF="https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html"> Google Developers Blog: Introduction to TensorFlow Datasets and Estimators </A>
  • <DT><A HREF="https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html?m=1"> Google Developers Blog: Introducing TensorFlow Feature Columns </A>
  • <DT><A HREF="https://tensorly.github.io/stable/user_guide/index.html"> TensorLy: Tensor learning in Python </A>
  • <DT><A HREF="https://www.oreilly.com/ideas/question-answering-with-tensorflow"> Question answering with TensorFlow - O'Reilly Media </A>
  • <DT><A HREF="https://medium.com/intuitionmachine/kubernetes-gpus-tensorflow-8696232862ca"> Kubernetes + GPUs 💙 Tensorflow – Intuition Machine – Medium </A>
  • <DT><A HREF="https://eng.uber.com/deep-neuroevolution/"> Welcoming the Era of Deep Neuroevolution - Uber Engineering Blog </A>
  • <DT><A HREF="https://tryolabs.com/blog/2017/12/12/deep-learning-for-nlp-advancements-and-trends-in-2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_feed%3Bk%2BLH0xAtQoitL9UwF53hBQ%3D%3D"> Deep Learning for NLP, advancements and trends in 2017 - Tryolabs Blog </A>
  • <DT><A HREF="https://blog.floydhub.com/turning-design-mockups-into-code-with-deep-learning/"> Turning Design Mockups Into Code With Deep Learning - FloydHub Blog </A>
  • <DT><A HREF="http://www.wildml.com/2017/12/ai-and-deep-learning-in-2017-a-year-in-review/"> AI and Deep Learning in 2017 – A Year in Review – WildML </A>
  • <DT><A HREF="https://research.googleblog.com/2018/01/the-google-brain-team-looking-back-on.html?m=1"> Research Blog: The Google Brain Team — Looking Back on 2017 (Part 1 of 2) </A>
  • <DT><A HREF="https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/reinforcement_learning.html"> Reinforcement Learning · Artificial Inteligence </A>
  • <DT><A HREF="https://airbnb.design/sketching-interfaces/"> Sketching Interfaces – Airbnb Design </A>
  • <DT><A HREF="https://www.datasciencecentral.com/profiles/blogs/machine-learning-explained-understanding-supervised-unsupervised"> Machine Learning Explained: Understanding Supervised, Unsupervised, and Reinforcement Learning - Data Science Central </A>
  • <DT><A HREF="http://cv-tricks.com/keras/fine-tuning-tensorflow/"> Fine-tuning Convolutional Neural Network on own data using Keras Tensorflow – CV-Tricks.com </A>
  • <DT><A HREF="https://deepmind.com/blog/neural-approach-relational-reasoning/"> A neural approach to relational reasoning | DeepMind </A>
  • <DT><A HREF="https://www.alexirpan.com/2018/02/14/rl-hard.html"> Deep Reinforcement Learning Doesn't Work Yet </A>
  • <DT><A HREF="https://research.google.com/bigpicture/"> Big Picture: Google Visualization Research </A>
  • <DT><A HREF="https://research.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html"> Research Blog: Using Evolutionary AutoML to Discover Neural Network Architectures </A>
  • <DT><A HREF="https://mortendahl.github.io/2018/03/01/secure-computation-as-dataflow-programs/"> Secure Computations as Dataflow Programs - Cryptography and Machine Learning </A>
  • <DT><A HREF="https://hanxiao.github.io/2018/04/21/Teach-Machine-to-Comprehend-Text-and-Answer-Question-with-Tensorflow/"> Teach Machine to Comprehend Text and Answer Question with Tensorflow - Part I · Han Xiao Tech Blog </A>
  • <DT><A HREF="http://karpathy.github.io/2016/05/31/rl/"> Deep Reinforcement Learning: Pong from Pixels </A>
  • <DT><A HREF="https://bicepjai.github.io/machine-learning/2016/08/22/tensorboard-on-gcloud.html"> Tensorboard on gcloud </A>
  • <DT><A HREF="https://medium.com/intro-to-artificial-intelligence/entity-extraction-using-deep-learning-8014acac6bb8"> Entity extraction using Deep Learning based on Guillaume Genthial work on NER </A>
  • <DT><A HREF="https://towardsdatascience.com/deep-learning-book-notes-chapter-3-part-1-introduction-to-probability-49d13c997f2a"> Deep Learning Book Notes, Chapter 3 (part 1): Introduction to Probability </A>
  • <DT><A HREF="https://blog.goodaudience.com/predicting-physical-activity-based-on-smartphone-sensor-data-using-cnn-lstm-9182dd13b6bc"> Predicting physical activity based on smartphone sensor data using CNN + LSTM </A>
  • <DT><A HREF="https://towardsdatascience.com/learn-word2vec-by-implementing-it-in-tensorflow-45641adaf2ac"> Learn Word2Vec by implementing it in tensorflow – Towards Data Science </A>
  • <DT><A HREF="https://alex-fabbri.github.io/TutorialBank/"> TutorialBank: Learning NLP Made Easier - Alexander R. Fabbri </A>
  • <DT><A HREF="http://minimaxir.com/2018/05/text-neural-networks/"> How to Quickly Train a Text-Generating Neural Network for Free </A>
  • <DT><A HREF="https://towardsdatascience.com/code2pix-deep-learning-compiler-for-graphical-user-interfaces-1256c346950b"> Code2Pix - Deep Learning Compiler for Graphical User Interfaces </A>
  • <DT><A HREF="https://www.poly-ai.com/docs/naacl18.pdf"> naacl18.pdf </A>
  • <DT><A HREF="https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9"> Deep Learning for Object Detection: A Comprehensive Review </A>
  • <DT><A HREF="https://hanxiao.github.io/2018/06/25/4-Encoding-Blocks-You-Need-to-Know-Besides-LSTM-RNN-in-Tensorflow/"> 4 Sequence Encoding Blocks You Must Know Besides RNN/LSTM in Tensorflow · Han Xiao Tech Blog - Deep Learning, Tensorflow, Machine Learning and more! </A>
  • <DT><A HREF="https://blog.insightdatascience.com/automated-front-end-development-using-deep-learning-3169dd086e82"> Automated front-end development using deep learning </A>
  • <DT><A HREF="https://thomas-tanay.github.io/post--L2-regularization/"> A New Angle on L2 Regularization </A>
  • <DT><A HREF="http://anotherdatum.com/"> Another Datum </A>
  • <DT><A HREF="https://indico.cern.ch/event/722319/contributions/3001310/attachments/1661268/2661638/IML-Sequence.pdf?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=NLP%20News"> IML-Sequence </A>
  • <DT><A HREF="https://github.com/ml4a/ml4a-guides/blob/experimental/notebooks/q_learning.ipynb"> ml4a-guides/q_learning.ipynb at experimental · ml4a/ml4a-guides </A>
  • <DT><A HREF="https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd/blob/master/tensorflow-rnn-tutorial/tutorial/00_RNN_predictions_playground.ipynb"> tensorflow-without-a-phd/00_RNN_predictions_playground.ipynb at master · GoogleCloudPlatform/tensorflow-without-a-phd </A>
  • <DT><A HREF="https://www.learnopencv.com/convolutional-neural-network-based-image-colorization-using-opencv/"> Convolutional Neural Network based Image Colorization using OpenCV | Learn OpenCV </A>
  • <DT><A HREF="https://blog.feedly.com/transfer-learning-in-nlp/"> Transfer Learning in NLP – Feedly Blog </A>
  • <DT><A HREF="https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning.html"> CS 229 - Deep Learning Cheatsheet </A>
  • <DT><A HREF="https://ai.googleblog.com/2018/08/introducing-new-framework-for-flexible.html?m=1"> Google AI Blog: Introducing a New Framework for Flexible and Reproducible Reinforcement Learning Research </A>
  • <DT><A HREF="https://medium.com/tensorflow/building-a-text-classification-model-with-tensorflow-hub-and-estimators-3169e7aa568"> Building a text classification model with TensorFlow Hub and Estimators </A>
  • <DT><A HREF="https://towardsdatascience.com/deploy-tensorflow-models-9813b5a705d5"> Deploy TensorFlow models – Towards Data Science </A>
  • <DT><A HREF="https://mohitjain.me/category/deep-learning/"> Deep Learning – Mohit Jain </A>
  • <DT><A HREF="https://habr.com/company/mailru/blog/417767/"> Анализ тональности текстов с помощью сверточных нейронных сетей / Блог компании Mail.Ru Group / Хабр </A>
  • <DT><A

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多