xlm-v-base

xlm-v-base

多语言模型中的突破性词汇扩展

XLM-V是一个多语言模型,拥有百万词汇表,并在2.5TB数据上进行训练。相比于XLM-R,该模型在语言推理、问答与命名实体识别等任务中表现优异。通过减少语言间的词汇共享,这一创新提高了模型的表现,尤其在词汇重叠较少的语言中。XLM-V不仅提高跨语言任务的效果,也在低资源任务中实现重大突破,为机器学习和语言研究带来更多可能性。

XLM-V开源项目词汇瓶颈命名实体识别模型多语言HuggingfaceGithub自然语言推理

项目介绍:XLM-V (Base-sized model)

什么是XLM-V?

XLM-V是一种多语言模型,它拥有一百万个词汇表,经过对2.5TB的Common Crawl数据的训练而成,与XLM-R相似。它首次出现于由Davis Liang等人撰写的一篇关于如何克服多语言掩码语言模型中词汇瓶颈的论文中。该模型旨在通过减少在词汇重叠较少的语言之间的词块共享,来提升多语言词汇的容量,以确保每种语言都有足够的词汇覆盖。

模型描述

XLM-V与大多数大型多语言模型一样,使用一个共享的跨越100多种语言的词汇表。然而,这些模型在参数数量和深度上有所增加的同时,词汇大小基本上没有改变。词汇瓶颈限制了多语言模型的表现能力,例如XLM-R。XLM-V通过引入一种新的方法来扩大多语言词汇的规模,其词汇分配方法不仅更有语义意义,而且比XLM-R更短。借助这种改进的词汇表,XLM-V模型在自然语言推理、问答和命名实体识别等任务上,都比XLM-R取得了更优的表现。

使用方式

用户可以通过使用pipeline直接利用该模型进行掩码语言建模。例如:

from transformers import pipeline unmasker = pipeline('fill-mask', model='facebook/xlm-v-base') unmasker("Paris is the <mask> of France.") # 返回示例: # [{'score': 0.9286897778511047, 'token': 133852, 'token_str': 'capital', 'sequence': 'Paris is the capital of France.'}, ...]

这段代码展示了如何使用XLM-V模型来预测句子中缺失的单词。这种掩码语言建模的能力使得该模型非常适合于各种自然语言处理任务。

偏见、风险与限制

由于XLM-V的架构与XLM-R类似,并且训练数据相似,因此其存在的风险和局限性与XLM-R相反。建议有需求的用户参考XLM-R的模型卡,以获得更详细的信息。

参考文献

在引用该研究时,可以使用以下的BibTeX:

@ARTICLE{2023arXiv230110472L, author = {{Liang}, Davis and {Gonen}, Hila and {Mao}, Yuning and {Hou}, Rui and {Goyal}, Naman and {Ghazvininejad}, Marjan and {Zettlemoyer}, Luke and {Khabsa}, Madian}, title = "{XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models}", journal = {arXiv e-prints}, keywords = {Computer Science - Computation and Language, Computer Science - Machine Learning}, year = 2023, month = jan, eid = {arXiv:2301.10472}, pages = {arXiv:2301.10472}, doi = {10.48550/arXiv.2301.10472}, archivePrefix = {arXiv}, eprint = {2301.10472}, primaryClass = {cs.CL}, adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv230110472L}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} }

XLM-V为多语言模型的未来发展提供了一种新的方法,并展示了在语言表示任务中更高效的能力。这使得它在处理语言资源较少的任务上,变得更加有力。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多