xglm-564M

xglm-564M

提升跨语言AI技术的多语言自回归语言模型

XGLM-564M是一个多语言自回归语言模型,具有5.64亿参数,在30种语言的平衡语料库上训练,涉及5000亿子标记。该模型适用于跨语言少样本学习,支持多语言自然语言处理,并在COPA任务上实现零样本评估。有兴趣的用户可查看model card以获取更多使用信息。

多语言Github模型开源项目语言模型XGLM-564M少样本学习Huggingface参数

项目介绍:XGLM-564M

什么是XGLM-564M?

XGLM-564M是一个多语言自回归语言模型,拥有5.64亿个参数。该模型经过大规模多语言语料库的训练,包含了30种不同语言,总计5000亿子标记。它是为了在不同语言之间进行少样本学习而开发的,研究成果发表于论文《Few-shot Learning with Multilingual Language Models》中。该模型的实现可以在一个开源库中找到。

训练数据统计

XGLM-564M的训练数据来自多种语言,让我们来看看具体的数据细节:

  • 英语(en):使用最多,有约8,035亿个标记,占总数据的32.59%。
  • 俄语(ru):约1,477亿个标记,占数据的6.02%。
  • 中文(zh):约1,327亿个标记,占数据的4.83%。
  • 德语(de)西班牙语(es)、**法语(fr)**等其他语言也在训练数据中占据重要位置。

除了这些,占比更小的还有芬兰语、土耳其语、阿拉伯语、越南语等,总共有30种语言,其分布相对均衡,以支持多语言模型的训练。

模型使用信息

模型的详细使用指南可以在XGLM-564M开发团队发布的模型卡中找到,这是模型用户的一个重要资源。

示例应用(COPA任务)

以下是XGLM-564M在“可能的替代选择”任务(COPA)上的应用示例。COPA是一个用于推理的挑战任务,模型需要在两个备选选项中选出更合适的一个。下面展示了如何使用Python代码在COPA任务中做零样本评估:

import torch import torch.nn.functional as F from transformers import XGLMTokenizer, XGLMForCausalLM tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") data_samples = { 'en': [ { "premise": "I wanted to conserve energy.", "choice1": "I swept the floor in the unoccupied room.", "choice2": "I shut off the light in the unoccupied room.", "question": "effect", "label": "1" }, { "premise": "The flame on the candle went out.", "choice1": "I blew on the wick.", "choice2": "I put a match to the wick.", "question": "cause", "label": "0" } ], 'zh': [ { "premise": "我想节约能源。", "choice1": "我在空着的房间里扫了地板。", "choice2": "我把空房间里的灯关了。", "question": "effect", "label": "1" }, { "premise": "蜡烛上的火焰熄灭了。", "choice1": "我吹灭了灯芯。", "choice2": "我把一根火柴放在灯芯上。", "question": "cause", "label": "0" } ] } def get_logprobs(prompt): inputs = tokenizer(prompt, return_tensors="pt") input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:] outputs = model(**inputs, labels=input_ids) logits = outputs.logits logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2)) return logprobs def COPA_eval(prompt, alternative1, alternative2): lprob1 = get_logprobs(prompt + "\n" + alternative1).sum() lprob2 = get_logprobs(prompt + "\n" + alternative2).sum() return 0 if lprob1 > lprob2 else 1 for lang in data_samples: for idx, example in enumerate(data_samples[lang]): predict = COPA_eval(example["premise"], example["choice1"], example["choice2"]) print(f'{lang}-{idx}', predict, example['label'])

此代码展示了如何通过XGLM-564M模块来评估模型在不同语言上的推理能力。模型可以根据提供的前提和选项来判断哪一个选项更可能是正确的原因或结果。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多