DeBERTa V3大规模模型设计,问答任务表现卓越
该DeBERTa模型基于SQuAD2.0数据集进行了微调,专注于提取式问答任务。通过Haystack和Transformers框架的整合,模型在检索和匹配性能上表现优异,经多种数据集验证显示出 高准确性。
deBERTa-V3-Large-SQuAD2是一个用于抽取式问答的预训练语言模型,由deepset团队开发并微调。它采用了微软开发的deBERTa V3大型模型,专门针对SQuAD 2.0数据集进行了训练和优化。
deBERTa-v3-large模型通过SQuAD 2.0数据集进行微调,该数据集包含了一种特殊的问答对:其中既有可回答的问题,也包含了一些无答案的问题,用以提高模型的实用性。
SQuAD 2.0是一款流行的问答数据集,增加了无答案问题以提高模型的鲁棒性。这允许模型不仅能从文档中抽取答案,还能识别出问题是否存在答案。
batch_size = 2 grad_acc_steps = 32 n_epochs = 6 base_LM_model = "microsoft/deberta-v3-large" max_seq_len = 512 learning_rate = 7e-6 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64
Haystack是一个AI编排框架,用于构建设备化和生产就绪的大型语言模型应用。在Haystack中,可以使用deBERTa-V3-Large-SQuAD2模型进行文档的抽取式问答。具体使用步骤如下:
# 安装Haystack和相关支持包 from haystack import Document from haystack.components.readers import ExtractiveReader docs = [ Document(content="Python is a popular programming language"), Document(content="python ist eine beliebte Programmiersprache"), ] reader = ExtractiveReader(model="deepset/deberta-v3-large-squad2") reader.warm_up() question = "What is a popular programming language?" result = reader.run(query=question, documents=docs)
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/deberta-v3-large-squad2" # 获取预测结果 nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # 加载模型及分词器 model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
deBERTa-v3-large-squad2模型在SQuAD 2.0开发集上的表现如下:
该模型能够很好地处理有答案和无答案的问答任务,共评估了11,873个问题,其中包含有答案的问题5,928个和无答案的问题5,945个。
deepset团队是背后推动开源AI框架Haystack的公司。Haystack是一个面向生产就绪应用程序的自定义AI编排框架。
他们的其他重要工作包括:
了解更多关于Haystack的信息,请访问GitHub和官方文档。此外,您还可以加入其Discord社区进行交流。
其他社交平台:
deepset团队也在进行人才招聘,详情请点击这里。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模 型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号