不当和有害内容分类模型
该开源项目基于cointegrated/rubert-tiny模型,旨在快速识别和分类俄语短文本中的不当和有害内容。通过多标签分类技术,该模型可针对谩骂、淫秽 、威胁和声誉风险进行评估,协助社交网络内容审核。
rubert-tiny-toxicity 是基于 cointegrated/rubert-tiny 模型的一个项目,专门针对俄语短文本(如社交网络评论)的毒性和不当内容进行分类。这个模型对文本中的不良信息进行多标签分类,共包含以下几种类别:
non-toxic
:文本不含侮辱、粗俗或威胁性语言。insult
:含有侮辱性内容。obscenity
:含有粗俗语言。threat
:含有威胁性内容。dangerous
:文本含有可能对说话者声誉有害的不当内容。一个文本被认为是安全的,需要满足同时为 non-toxic
且不 dangerous
。这意味着文本既不含有侮辱或威胁性内容,也不会对说话者的声誉造成损害。
rubert-tiny-toxicity 提供了一种计算文本毒性和危险性的概率方法。以下是主要使用步骤和代码示例:
# 首先安装必要的库 # !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # 加载预训练模型和分词器 model_checkpoint = 'cointegrated/rubert-tiny-toxicity' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() # 定义计算毒性的方法 def text2toxicity(text, aggregate=True): """计算文本的毒性(若 aggregate=True)或毒性各方面的向量(若 aggregate=False)""" with torch.no_grad(): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() if isinstance(text, str): proba = proba[0] if aggregate: return 1 - proba.T[0] * (1 - proba.T[-1]) return proba # 测试示例 print(text2toxicity('я люблю нигеров', True)) print(text2toxicity('я люблю нигеров', False))
通过上述代码,用户可以计算给定文本的毒性概率或详细的毒性类别概率。
该模型在 OK ML Cup 和 Babakov et.al. 的联合数据集上进行训练,采用 Adam
优化器,学习率为 1e-5
,批量大小为 64
,训练了 15
个周期。文本的不当评分大于 0.8 被认为是 不当的,而低于 0.2 则被认为是适当的。
在开发集上的每个标签 ROC AUC 结果如下:
non-toxic
:0.9937insult
:0.9912obscenity
:0.9881threat
:0.9910dangerous
:0.8295这些结果表明,rubert-tiny-toxicity 在分类俄语短文本的毒性和不当内容方面表现出色。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮 助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号