twitter-roberta-large-2022-154m

twitter-roberta-large-2022-154m

训练于154M推文的RoBERTa-large模型(2022年数据)及其应用

本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。

推特GithubRoBERTa-large模型开源项目Huggingface特征提取掩码语言模型自然语言处理

项目介绍:twitter-roberta-large-2022-154m

项目背景

twitter-roberta-large-2022-154m 是一个基于 RoBERTa-large 的模型,专门训练于截至2022年12月底的1.54亿条推文。开发这个模型的目的是为了更好地理解和分析推特上的自然语言。在这个项目下,还提供了一个基于相同数据的基础模型,用户可以在该链接找到 基础模型

为了训练这个模型,数据来源于Twitter Academic API,这些数据涵盖了从2018年1月至2022年12月的推文月度数据。经过过滤后的数据量从2.2亿条推文减至1.54亿条,具体的过滤和预处理的详情可以参考 TimeLMs 论文

数据预处理

在对文本数据进行处理时,需要用占位符替换用户名和链接,例如将用户名替换为“@user”,链接替换为“http”。如果用户希望保留已经验证的用户名称,可以参考项目中的用户列表。这一预处理操作可以帮助在分析和预测过程中减少不必要的噪音。

def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text)

示例:掩码语言模型

该模型可以用于填充掩码语言模型的任务,它使用 Transformers 接口进行操作。下面是一个简单的示例,展示如何使用模型进行掩码语言预测,并提供了代码例子。

from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-large-2022-154m" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5)

示例:推文嵌入

模型还支持计算推文的嵌入向量,并可用于计算相似度。以下代码展示了如何通过简单的余弦相似度来评估推文间的相似性。

from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-large-2022-154m" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet))

特征提取示例

除了语言理解任务,该模型也可以用于特征提取,帮助研究人员进行自定义分析。

from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-large-2022-154m" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0)

引用信息

如在研究中使用该模型,请引用相关论文

@article{loureiro2023tweet, title={Tweet Insights: A Visualization Platform to Extract Temporal Insights from Twitter}, author={Loureiro, Daniel and Rezaee, Kiamehr and Riahi, Talayeh and Barbieri, Francesco and Neves, Leonardo and Anke, Luis Espinosa and Camacho-Collados, Jose}, journal={arXiv preprint arXiv:2308.02142}, year={2023} }

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多