
适用于英文多标签话题分类的推文模型
tweet-topic-21-multi模型基于TimeLMs语言模型开发,通过对2018年1月至2021年12月间发布的超过1.24亿条推文进行训练,实现了多标签话题分类功能。模型采用11,267条推文进行微调,涵盖艺术文化、商业、科技、体育等多种话题,适用于需要高精度英文文本多标签分类的任务。
tweet-topic-21-multi项目是一个基于TimeLMs语言模型的项目,这个语言模型在2018年1月至2021年12月期间的大约1.24亿条推文上进行了训练,然后进一步在一个包含11,267条推文的语料库上进行微调,以实现多标签主题分类。该模型适用于英文文本分析。
该项目的开发基于一个时间序列的语言模型(TimeLMs),这种模型特别适用于需要处理随时间变化的语言数据。tweet-topic-21-multi项目的目标是实现推文的多标签主题分类,也就是说,它能够从给定的推文中识别出多个可能的主题标签。
tweet-topic-21-multi模型主要用于对社交媒体上推文的分类,以识别其讨论的主题。这些主题包括了艺术与文化、商业与创业、名流与流行文化、饮食、游戏、科技等等,总共有19个不同的主题标签。这些标签使得该模型可以在不同行业中应用,比如市场研究、社交媒体分析以及新闻聚合等领域。
项目采用了基于Hugging Face Transformers库的技术栈,具体步骤如下:
以下是Python代码示例,展示如何实现推文内容的主题分类:
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import expit MODEL = f"cardiffnlp/tweet-topic-21-multi" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) class_mapping = model.config.id2label text = "It is great to see athletes promoting awareness for climate change." tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) scores = output[0][0].detach().numpy() scores = expit(scores) predictions = (scores >= 0.5) * 1 # 映射至具体主题 for i in range(len(predictions)): if predictions[i]: print(class_mapping[i])
输出的结果显示,这条推文被识别为与“新闻与社会关注”和“体育”有关。这说明项目在实际应用中能够精确预测出推文的主题。
如果在研究中使用了此模型,请引用参考论文:
@inproceedings{antypas-etal-2022-twitter, title = "{T}witter Topic Classification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Silva, Vitor and Neves, Leonardo and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.299", pages = "3386--3400" }
tweet-topic-21-multi项目对于深入理解社交媒体中的主题讨论提供了强有力的支持,也为后续研究和应用带来了诸多可能性。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率 的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文 撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号