适用于英文多标签话题分类的推文模型
tweet-topic-21-multi模型基于TimeLMs语言模型开发,通过对2018年1月至2021年12月间发布的超过1.24亿条推文进行训练,实现了多标签话题分类功能。模型采用11,267条推文进行微调,涵盖艺术文化、商业、科技、体育等多种话题,适用于需要高精度英文文本多标签分类的任务。
tweet-topic-21-multi项目是一个基于TimeLMs语言模型的项目,这个语言模型在2018年1月至2021年12月期间的大约1.24亿条推文上进行了训练,然后进一步在一个包含11,267条推文的语料库上进行微调,以实现多标签主题分类。该模型适用于英文文本分析。
该项目的开发基于一个时间序列的语言模型(TimeLMs),这种模型特别适用于需要处理随时间变化的语言数据。tweet-topic-21-multi项目的目标是实现推文的多标签主题分类,也就是说,它能够从给定的推文中识别出多个可能的主题标签。
tweet-topic-21-multi模型主要用于对社交媒体上推文的分类,以识别其讨论的主题。这些主题包括了艺术与文化、商业与创业、名流与流行文化、饮食、游戏、科技等等,总共有19个不同的主题标签。这些标签使得该模型可以在不同行业中应用,比如市场研究、社交媒体分析以及新闻聚合等领域。
项目采用了基于Hugging Face Transformers库的技术栈,具体步骤如下:
以下是Python代码示例,展示如何实现推文内容的主题分类:
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import expit MODEL = f"cardiffnlp/tweet-topic-21-multi" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) class_mapping = model.config.id2label text = "It is great to see athletes promoting awareness for climate change." tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) scores = output[0][0].detach().numpy() scores = expit(scores) predictions = (scores >= 0.5) * 1 # 映射至具体主题 for i in range(len(predictions)): if predictions[i]: print(class_mapping[i])
输出的结果显示,这条推文被识别为与“新闻与社会关注”和“体育”有关。这说明项目在实际应用中能够精确预测出推文的主题。
如果在研究中使用了此模型,请引用参考论文:
@inproceedings{antypas-etal-2022-twitter, title = "{T}witter Topic Classification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Silva, Vitor and Neves, Leonardo and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.299", pages = "3386--3400" }
tweet-topic-21-multi项目对于深入理解社交媒体中的主题讨论提供了强有力的支持,也为后续研究和应用带来了诸多可能性。