awesome-adapter-resources

awesome-adapter-resources

大型预训练神经网络适配器方法工具和论文资源库

本项目汇集了大型预训练神经网络适配器方法的关键工具和论文。涵盖自然语言处理、计算机视觉和音频处理领域的适配器技术,包括方法、组合技术、分析评估和应用。提供框架工具链接和详细调查研究,是研究人员和从业者的重要参考资源。

AdapterPEFTNLP参数高效迁移学习Github开源项目

Awesome Adapter Resources

This repository collects important tools and papers related to adapter methods for recent large pre-trained neural networks.

Adapters (aka Parameter-Efficient Transfer Learning (PETL) or Parameter-Efficient Fine-Tuning (PEFT) methods) include various parameter-efficient approaches of adapting large pre-trained models to new tasks.

Content

Why Adapters?

Large pre-trained (Transformer-based) models have become the foundation of various ML domains in recent years. While the most prevalent method of adapting these models to new tasks involves costly full fine-tuning of all model parameters, a series of parameter-efficient and lightweight alternatives, adapters, have been established in recent time.

Using adapters provides multiple benefits. They are ...

  • ... parameter-efficient, i.e. they only update a very small subset (e.g. under 1%) of a model's parameters.
  • ... modular, i.e. the updated parameters can be extracted and shared independently of the base model parameters
  • ... easy to share and easy to deploy at scale due to their small file sizes. E.g. requiring only ~3MB per task instead of ~500MB for sharing a full model.
  • ... often composable, i.e. can be stacked, fused or mixed to leverage their combined knowledge.
  • ... often on-par in terms of performance with full fine-tuning.

Frameworks and Tools

  • AdapterHub: A Framework for Adapting Transformers  GitHub Repo stars

    Conference on Empirical Methods in Natural Language Processing

    Jonas Pfeiffer, Andreas Rücklé, Clifton A. Poth, Aishwarya Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun Cho, Iryna Gurevych (2020)

    <details> <summary>TLDR</summary> AdaptersHub is proposed, a framework that allows dynamic “stiching-in” of pre-trained adapters for different tasks and languages that enables scalable and easy access to sharing of task-specific models, particularly in low-resource scenarios. </details>

    [Paper PDF]  [Code]  [Website]  [Semantic Scholar]

  • Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning  GitHub Repo stars

    Conference on Empirical Methods in Natural Language Processing

    Clifton A. Poth, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Arne Engländer, Timo Imhof, Ivan Vuli'c, Sebastian Ruder, Iryna Gurevych, Jonas Pfeiffer (2023)

    <details> <summary>TLDR</summary> Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models and allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups, is introduced. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • OpenDelta  GitHub Repo stars

    [Code]  [Website]

  • PEFT: State-of-the-art Parameter-Efficient Fine-Tuning  GitHub Repo stars

    [Code]

  • LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models  GitHub Repo stars

    Conference on Empirical Methods in Natural Language Processing

    Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, R. Lee, Lidong Bing, Soujanya Poria (2023)

    <details> <summary>TLDR</summary> LLM-Adapters is presented, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks, demonstrating that using adapter- based PEFT in smaller-scale LLMs with few extra trainable parameters yields comparable, and in some cases superior, performance to powerful LLMs in zero-shot inference on both reasoning tasks. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • Alpaca-LoRA  GitHub Repo stars

    [Code]

Surveys

  • Modular Deep Learning 

    arXiv.org

    Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, E. Ponti (2023)

    <details> <summary>TLDR</summary> A survey of modular architectures is offered, providing a unified view over several threads of research that evolved independently in the scientific literature, and various additional purposes of modularity are explored, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. </details>

    [Paper PDF]  [Semantic Scholar]

  • Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning 

    arXiv.org

    Vladislav Lialin, Vijeta Deshpande, Anna Rumshisky (2023)

    <details> <summary>TLDR</summary> A taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency and fine-tuning multibillion-scale language models is provided. </details>

    [Paper PDF]  [Semantic Scholar]

  • PEFT-Ref: A Modular Reference Architecture and Typology for Parameter-Efficient Finetuning Techniques 

    arXiv.org

    Mohammed Sabry, Anya Belz (2023)

    <details> <summary>TLDR</summary> A reference architecture is presented which standardises aspects shared by different PEFT techniques, while isolating differences to specific locations and interactions with the standard components, supporting not only direct comparison of different techniques and their efficiency and task performance, but also systematic exploration of reusability and composability of the different types of finetuned modules. </details>

    [Paper PDF]  [Semantic Scholar]

  • Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey 

    arXiv.org

    Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, Sai Qian Zhang (2024)

    <details> <summary>TLDR</summary> This survey presents comprehensive studies of various PEFT algorithms, examining their performance and computational overhead, and overview of applications developed using different PEFT algorithms and discusses common techniques employed to mitigate computation costs for PEFT. </details>

    [Paper PDF]  [Semantic Scholar]

Natural Language Processing

Methods

  • Parameter-Efficient Transfer Learning for NLP  GitHub Repo stars

    International Conference on Machine Learning

    N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, S. Gelly (2019)

    <details> <summary>TLDR</summary> To demonstrate adapter's effectiveness, the recently proposed BERT Transformer model is transferred to 26 diverse text classification tasks, including the GLUE benchmark, and adapter attain near state-of-the-art performance, whilst adding only a few parameters per task. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters  GitHub Repo stars

    Findings

    Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang, Ming Zhou (2020)

    <details> <summary>TLDR</summary> K-Adapter is proposed, which remains the original parameters of the pre-trained model fixed and supports continual knowledge infusion and captures richer factual and commonsense knowledge than RoBERTa. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • Parameter-Efficient Transfer Learning with Diff Pruning  GitHub Repo stars

    Annual Meeting of the Association for Computational Linguistics

    Demi Guo, Alexander M. Rush, Yoon Kim (2020)

    <details> <summary>TLDR</summary> Diff pruning can match the performance of finetuned baselines on the GLUE benchmark while only modifying 0.5% of the pretrained model’s parameters per task and scales favorably in comparison to popular pruning approaches. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • Prefix-Tuning: Optimizing Continuous Prompts for Generation  GitHub Repo stars

    Annual Meeting of the Association for Computational Linguistics

    Xiang Lisa Li, Percy Liang (2021)

    <details> <summary>TLDR</summary> Prefix-tuning is proposed, a lightweight alternative to fine- Tuning for natural language generation tasks, which keeps language model parameters frozen and instead optimizes a sequence of continuous task-specific vectors, which is called the prefix. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • The Power of Scale for Parameter-Efficient Prompt Tuning  GitHub Repo stars

    Conference on Empirical Methods in Natural Language Processing

    Brian Lester, Rami Al-Rfou, Noah Constant (2021)

    <details> <summary>TLDR</summary> This work explores “prompt tuning,” a simple yet effective mechanism for learning “soft prompts” to condition frozen language models to perform specific downstream tasks and shows that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer and enables efficient “Prompt ensembling.” </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • Compacter: Efficient Low-Rank Hypercomplex Adapter Layers  GitHub Repo stars

    Neural Information Processing Systems

    Joe Davison (2021)

    <details> <summary>TLDR</summary> Compacter is proposed, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work, and accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. </details>

    [Paper PDF]  [Code]  [Semantic Scholar]

  • LoRA: Low-Rank Adaptation of Large Language Models  GitHub Repo stars

    International Conference on Learning Representations

    J. E. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Weizhu Chen (2021)

    <details> <summary>TLDR</summary> Low-Rank Adaptation, or LoRA, is proposed, which freezes the pre-trained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks. </details>

    [Paper PDF]  [Code]  [[Semantic

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多