This repository collects important tools and papers related to adapter methods for recent large pre-trained neural networks.
Adapters (aka Parameter-Efficient Transfer Learning (PETL) or Parameter-Efficient Fine-Tuning (PEFT) methods) include various parameter-efficient approaches of adapting large pre-trained models to new tasks.
Large pre-trained (Transformer-based) models have become the foundation of various ML domains in recent years. While the most prevalent method of adapting these models to new tasks involves costly full fine-tuning of all model parameters, a series of parameter-efficient and lightweight alternatives, adapters, have been established in recent time.
Using adapters provides multiple benefits. They are ...
AdapterHub: A Framework for Adapting Transformers
Conference on Empirical Methods in Natural Language Processing
Jonas Pfeiffer, Andreas Rücklé, Clifton A. Poth, Aishwarya Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun Cho, Iryna Gurevych (2020)
<details> <summary>TLDR</summary> AdaptersHub is proposed, a framework that allows dynamic “stiching-in” of pre-trained adapters for different tasks and languages that enables scalable and easy access to sharing of task-specific models, particularly in low-resource scenarios. </details>Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning
Conference on Empirical Methods in Natural Language Processing
Clifton A. Poth, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Arne Engländer, Timo Imhof, Ivan Vuli'c, Sebastian Ruder, Iryna Gurevych, Jonas Pfeiffer (2023)
<details> <summary>TLDR</summary> Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models and allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups, is introduced. </details>OpenDelta
PEFT: State-of-the-art Parameter-Efficient Fine-Tuning
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
Conference on Empirical Methods in Natural Language Processing
Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, R. Lee, Lidong Bing, Soujanya Poria (2023)
<details> <summary>TLDR</summary> LLM-Adapters is presented, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks, demonstrating that using adapter- based PEFT in smaller-scale LLMs with few extra trainable parameters yields comparable, and in some cases superior, performance to powerful LLMs in zero-shot inference on both reasoning tasks. </details>Alpaca-LoRA
Modular Deep Learning
arXiv.org
Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, E. Ponti (2023)
<details> <summary>TLDR</summary> A survey of modular architectures is offered, providing a unified view over several threads of research that evolved independently in the scientific literature, and various additional purposes of modularity are explored, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. </details>Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
arXiv.org
Vladislav Lialin, Vijeta Deshpande, Anna Rumshisky (2023)
<details> <summary>TLDR</summary> A taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency and fine-tuning multibillion-scale language models is provided. </details>PEFT-Ref: A Modular Reference Architecture and Typology for Parameter-Efficient Finetuning Techniques
arXiv.org
Mohammed Sabry, Anya Belz (2023)
<details> <summary>TLDR</summary> A reference architecture is presented which standardises aspects shared by different PEFT techniques, while isolating differences to specific locations and interactions with the standard components, supporting not only direct comparison of different techniques and their efficiency and task performance, but also systematic exploration of reusability and composability of the different types of finetuned modules. </details>Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
arXiv.org
Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, Sai Qian Zhang (2024)
<details> <summary>TLDR</summary> This survey presents comprehensive studies of various PEFT algorithms, examining their performance and computational overhead, and overview of applications developed using different PEFT algorithms and discusses common techniques employed to mitigate computation costs for PEFT. </details>Parameter-Efficient Transfer Learning for NLP
International Conference on Machine Learning
N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, S. Gelly (2019)
<details> <summary>TLDR</summary> To demonstrate adapter's effectiveness, the recently proposed BERT Transformer model is transferred to 26 diverse text classification tasks, including the GLUE benchmark, and adapter attain near state-of-the-art performance, whilst adding only a few parameters per task. </details>K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters
Findings
Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang, Ming Zhou (2020)
<details> <summary>TLDR</summary> K-Adapter is proposed, which remains the original parameters of the pre-trained model fixed and supports continual knowledge infusion and captures richer factual and commonsense knowledge than RoBERTa. </details>Parameter-Efficient Transfer Learning with Diff Pruning
Annual Meeting of the Association for Computational Linguistics
Demi Guo, Alexander M. Rush, Yoon Kim (2020)
<details> <summary>TLDR</summary> Diff pruning can match the performance of finetuned baselines on the GLUE benchmark while only modifying 0.5% of the pretrained model’s parameters per task and scales favorably in comparison to popular pruning approaches. </details>Prefix-Tuning: Optimizing Continuous Prompts for Generation
Annual Meeting of the Association for Computational Linguistics
Xiang Lisa Li, Percy Liang (2021)
<details> <summary>TLDR</summary> Prefix-tuning is proposed, a lightweight alternative to fine- Tuning for natural language generation tasks, which keeps language model parameters frozen and instead optimizes a sequence of continuous task-specific vectors, which is called the prefix. </details>The Power of Scale for Parameter-Efficient Prompt Tuning
Conference on Empirical Methods in Natural Language Processing
Brian Lester, Rami Al-Rfou, Noah Constant (2021)
<details> <summary>TLDR</summary> This work explores “prompt tuning,” a simple yet effective mechanism for learning “soft prompts” to condition frozen language models to perform specific downstream tasks and shows that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer and enables efficient “Prompt ensembling.” </details>Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Neural Information Processing Systems
Joe Davison (2021)
<details> <summary>TLDR</summary> Compacter is proposed, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work, and accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. </details>LoRA: Low-Rank Adaptation of Large Language Models
International Conference on Learning Representations
J. E. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Weizhu Chen (2021)
<details> <summary>TLDR</summary> Low-Rank Adaptation, or LoRA, is proposed, which freezes the pre-trained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks. </details>[Paper PDF] [Code] [[Semantic
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供 了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号