mlgb

mlgb

多模型支持的CTR预测和推荐系统库

MLGB是一个Python库,集成了50多种CTR预测和推荐系统模型,兼容TensorFlow和PyTorch框架。该库提供简洁的API,方便快速调用复杂模型。通过代码优化,MLGB实现了高效性能,为研究和工程实践提供了多样化的模型选择。

MLGB机器学习CTR预测推荐系统深度学习模型Github开源项目
<p align="center"> <img src="https://github.com/UlionTse/mlgb/blob/main/docs/mlgb_logo.png" width="200"/> </p> <p align="center"> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/mlgb.svg?color=blue"></a> <a href="https://anaconda.org/conda-forge/mlgb"><img alt="Conda - Version" src="https://img.shields.io/conda/vn/conda-forge/mlgb.svg?color=blue"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - License" src="https://img.shields.io/pypi/l/mlgb.svg?color=brightgreen"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - Python" src="https://img.shields.io/pypi/pyversions/mlgb.svg?color=blue"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - Status" src="https://img.shields.io/pypi/status/mlgb.svg?color=brightgreen"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - Wheel" src="https://img.shields.io/badge/wheel-yes-brightgreen.svg"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - Downloads" src="https://static.pepy.tech/personalized-badge/mlgb?period=total&units=international_system&left_text=downloads&left_color=grey&right_color=blue"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - TensorFlow" src="https://img.shields.io/badge/TensorFlow-2.10+-yellow.svg"></a> <a href="https://pypi.org/project/mlgb"><img alt="PyPI - PyTorch" src="https://img.shields.io/badge/PyTorch-2.1+-tomato.svg"></a> </p>

MLGB means Machine Learning of the Great Boss, and is called 「妙计包」.
MLGB is a library that includes many models of CTR Prediction & Recommender System by TensorFlow & PyTorch.

Advantages

  • Easy! Use mlgb.get_model(model_name, **kwargs) to get a complex model.
  • Fast! Better performance through better code.
  • Enjoyable! 50+ ranking & matching models to use, 2 languages(TensorFlow & PyTorch) to deploy.

Supported Models

IDModel NamePaper LinkPaper TeamPaper Year
<tr><th colspan=5 align="center">:open_file_folder: Ranking-Model::Normal :point_down:</th></tr>
1LRPredicting Clicks: Estimating the Click-Through Rate for New AdsMicrosoft2007
2PLM/MLRLearning Piece-wise Linear Models from Large Scale Data for Ad Click PredictionAlibaba2017
3MLP/DNNNeural Networks for Pattern RecognitionChristopher M. Bishop(Microsoft, 1997-Present), Foreword by Geoffrey Hinton.1995
4DLRMDeep Learning Recommendation Model for Personalization and Recommendation SystemsFacebook(Meta)2019
5MaskNetMaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided MaskWeibo(Sina)2021
6DCM/DeepCrossDeep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial FeaturesMicrosoft2016
7DCNDCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems, v1Google(Alphabet)2017, 2020
8EDCNEnhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR ModelsHuawei2021
9FMFactorization MachinesSteffen Rendle(Google, 2013-Present)2010
10FFMField-aware Factorization Machines for CTR PredictionNTU2016
11HOFMHigher-Order Factorization MachinesNTT2016
12FwFMField-weighted Factorization Machines for Click-Through Rate Prediction in Display AdvertisingJunwei Pan(Yahoo), etc.2018, 2020
13FmFMFM^2: Field-matrixed Factorization Machines for Recommender SystemsYahoo2021
14FEFMFIELD-EMBEDDED FACTORIZATION MACHINES FOR CLICK-THROUGH RATE PREDICTIONHarshit Pande(Adobe)2020, 2021
15AFMAttentional Factorization Machines: Learning the Weight of Feature Interactions via Attention NetworksZJU&NUS(Jun Xiao(ZJU), Xiangnan He(NUS), etc.)2017
16LFMLearning Feature Interactions with Lorentzian Factorization MachineEBay2019
17IFMAn Input-aware Factorization Machine for Sparse PredictionTHU2019
18DIFMA Dual Input-aware Factorization Machine for CTR PredictionTHU2020
19FNNDeep Learning over Multi-field Categorical Data – A Case Study on User Response PredictionUCL(Weinan Zhang(UCL, SJTU), etc.)2016
20PNNProduct-based Neural Networks for User ResponseSJTU&UCL(Yanru Qu(SJTU), Weinan Zhang(SJTU, UCL), etc.)2016
21PINProduct-based Neural Networks for User Response Prediction over Multi-field Categorical DataHuawei(Yanru

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多