Qwen2.5-14B-Instruct-AWQ

Qwen2.5-14B-Instruct-AWQ

Qwen2.5大模型,专注于提升编码、数学能力与多语种支持

Qwen2.5是一款大语言模型,专注提升编码和数学能力,同时优化指令跟随、长文本生成和结构化数据理解。支持29种语言,如中文和英语。具备更强的系统提示适应性,适合角色扮演和条件设置。AWQ量化4-bit版本72B模型具备因果语言模型结构,支持131,072个token的上下文处理和8,192个token的文本生成,适合长文本处理及多语言应用。

长上下文支持多语言支持开源项目代码生成Qwen2.5-14B-Instruct量子化Github模型Huggingface

Qwen2.5-14B-Instruct-AWQ项目介绍

项目背景

Qwen2.5-14B-Instruct-AWQ是Qwen大规模语言模型系列的最新版本之一,它是在Qwen2.5基础上开发的,专注于增强模型的知识储备、编码能力和数学处理能力。该项目的模型涵盖从0.5亿到72亿参数的多种尺寸,旨在为用户提供强大的语言处理和生成能力。

主要改进

Qwen2.5在多个方面相比之前的版本进行了显著提升:

  • 知识扩展:模型拥有更丰富的领域专长,尤其是在编码和数学方面。
  • 指令遵从性:提升了对指令的理解和执行能力。
  • 长文本生成:可处理超过8000个标记的长文本。
  • 多语言支持:支持超过29种语言,包括中文、英语、法语等。
  • 结构数据处理:在理解和生成JSON等结构化数据上表现优越。
  • 长上下文支持:能够处理长达128,000个标记的上下文,并生成8192个标记的内容。
  • 多样化系统提示耐受性:增强了对角色扮演和聊天机器人设定条件的处理。

模型特点

该仓库中包含的是一种AWQ量化的4-bit指令微调Qwen2.5模型,具有以下特点:

  • 类型:因果语言模型
  • 训练阶段:预训练和后训练
  • 架构:使用transformers并结合RoPE、SwiGLU、RMSNorm,以及Attention QKV偏差
  • 参数数量:14.7亿,其中非嵌入参数为13.1亿
  • 层数:48层
  • 注意力头数:Q通道40个,KV通道8个
  • 上下文长度:处理长达131,072个标记的上下文,生成8192个标记
  • 量化:AWQ 4-bit

使用要求

要使用Qwen2.5模型,建议使用最新版本的transformers库。如果使用版本低于4.37.0,可能会遇到KeyError: 'qwen2'的错误。

快速开始

下面是如何加载和使用Qwen2.5模型生成文本的简单代码示例:

from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-14B-Instruct-AWQ" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

处理长文本

为了提升模型在处理超过32,768个标记的长文本时的性能,Qwen2.5使用了一项名为YaRN的技术来增强模型的长度拓展能力。用户可根据需要在config.json中进行配置,以开通YaRN技术。

评估与性能

有关Qwen2.5模型的详细评估结果,用户可通过其博客和GitHub获取相应信息。同时,关于量化模型与bfloat16原始模型的基准测试结果,也可在官方文档中找到。

引用方式

如果用户发现Qwen2.5的工作对其有帮助,可通过引用相关文献标注致谢。

@misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} }

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多