umberto-wikipedia-uncased-v1

umberto-wikipedia-uncased-v1

UmBERTo模型专注意大利语NLP任务

UmBERTo Wikipedia Uncased是基于Roberta的意大利语语言模型,利用SentencePiece和Whole Word Masking技术进行训练。该模型展示出在命名实体识别和词性标注任务中的高表现,尤其是在F1和精确度指标上。模型训练于小规模的意大利语Wikipedia语料库,为意大利语应用提供支持。可以在huggingface平台上获取并进行应用测试。

UmBERTo词汇表标记HuggingfaceGithub开源项目模型意大利语语言模型

项目介绍:UmBERTo Wikipedia Uncased v1

UmBERTo Wikipedia Uncased v1是一个基于Roberta的语言模型,专注于意大利语的大型语料库训练。该项目使用了两种创新的方法:SentencePiece和整词掩码,旨在提升模型的语言理解和生成能力。感兴趣的读者可以在Hugging Face官网上找到更多的信息。

数据集

这个模型主要是在从Wikipedia-ITA提取的小型语料库(大约7GB)上进行训练的。该语料库包含丰富的意大利语材料,用于支持模型在意大利语环境中的应用。

预训练模型

下表概述了UmBERTo Wikipedia Uncased v1模型的各种特性:

模型整词掩码大小写敏感分词器词汇表大小训练次数下载链接
umberto-wikipedia-uncased-v1SPM32K100k下载

这个模型应用了SentencePiece技术和整词掩码,旨在提高对上下文的理解能力。

下游任务

UmBERTo Wikipedia Uncased模型在命名实体识别(NER)和词性标注(POS)等任务中表现卓越。以下是相关任务的性能评估:

命名实体识别(NER)

数据集F1得分精确率召回率准确率
ICAB-EvalITA0786.24085.93986.54498.534
WikiNER-ITA90.48390.32890.63898.661

词性标注(POS)

数据集F1得分精确率召回率准确率
UD_Italian-ISDT98.56398.50898.61898.717
UD_Italian-ParTUT97.81097.83597.78498.060

使用方法

利用AutoModel和Autotokenizer加载UmBERTo Wikipedia Uncased模型非常简便。以下是代码示例:

import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1") umberto = AutoModel.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1") encoded_input = tokenizer.encode("Umberto Eco è stato un grande scrittore") input_ids = torch.tensor(encoded_input).unsqueeze(0) # Batch size 1 outputs = umberto(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output

预测掩码词语的代码示例:

from transformers import pipeline fill_mask = pipeline( "fill-mask", model="Musixmatch/umberto-wikipedia-uncased-v1", tokenizer="Musixmatch/umberto-wikipedia-uncased-v1" ) result = fill_mask("Umberto Eco è <mask> un grande scrittore")

最后

UmBERTo Wikipedia Uncased v1是由Musixmatch AI团队开发的智能语言模型。其精确的算法和丰富的数据集支持使其在意大利语环境中表现优异。用户可以通过Musixmatch的Github页面获取更多关于机器学习和人工智能的信息,或在推特上关注musixmatch进行实时互动。

项目创建者包括Loreto Parisi, Simone Francia和Paolo Magnani,欢迎通过相关邮箱进行联系和咨询。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多