Resources:
Infer-Retrieve-Rank (IReRa) is a generic and modular program which specifies interactions between pretrained Language Models and Retrievers to efficiently solve multi-label classification tasks with an extreme amount of classes (≥10,000 classes). Using only ≅ 50 labeled input examples, IReRa can be optimized to achieve state-of-the-art performance, despite not being finetuned. This optimization generally involves having a strong, teacher Language Model (e.g. gpt4) solve the task and gather instructions or demonstrations that help a more efficient, student Language Model (e.g. llama-2) solve the task better. A user can easily specify which parts of the program are implemented using which LMs, to strike the perfect balance between cost and performance.
The goal of IReRa is to easily be applicable to a broad range of tasks involving inference with Language Models and Retrieval. To this end, this repository detangles (i) the logic of Infer-Retrieve-Rank, (ii) the prompts needed to adapt IReRa to a specific domain and (iii) optimization techniques to improve performance. All of this is made possible through the dspy programming model.
LM calls of our results are cached, meaning you can reproduce our runs without paying for any inference costs yourself.
Create the conda environment:
conda create -n xmc python=3.10
conda activate xmc
Install DSPy. Our work relies on an experimental branch of DSPy.
git clone -b irera --single-branch https://github.com/stanfordnlp/dspy.git
cd dspy/
git checkout 802f2d5f26c1a64d8aad6adbd8b4394b9c4bb743
pip install .
cd ..
Install the rest of the requirements:
pip install -r requirements.txt
All LM calls to reproduce our runs are cached. However, if you want to execute new calls you will need to set up OpenAI and local models.
Set your OpenAI API KEY:
export OPENAI_API_KEY=<your-key>
For local models (e.g. llama-2), set up a local Text Generation Interface (TGI) via these steps. Make sure to point the url field in lm_config.json to your TGI server.
Load the data and cache needed to reproduce our results.
bash scripts/load_data.sh
bash scripts/load_cache.sh
All compilation IReRa runs from our paper can be reproduced by running bash scripts/compile_left_to_right.sh or bash scripts/run_left_to_right.sh. We provide the resulting program state in results_precompiled/ so you can load our compiled IReRa programs.
Load our compiled IReRa for ESCO_TECH and evaluate:
python run_irera.py \
--dataset_name esco_tech \
--state_path ./results_precompiled/esco_tech_infer-retrieve-rank_00/program_state.json \
--lm_config_path ./lm_config.json \
--do_validation \
--do_test
Compile your own IReRa on ESCO_TECH and evaluate:
python compile_irera.py \
--dataset_name esco_tech \
--ontology_name esco \
--prior_path ./data/esco/esco_priors.json \
--ontology_path ./data/esco/skills_en_label.txt \
--infer_signature_name infer_esco \
--rank_signature_name rank_esco \
--retriever_model_name sentence-transformers/all-mpnet-base-v2 \
--infer_student_model_name llama-2-13b-chat \
--infer_teacher_model_name gpt-3.5-turbo-instruct \
--rank_student_model_name gpt-4-1106-preview \
--rank_teacher_model_name gpt-4-1106-preview \
--infer_compile_metric_name rp10 \
--rank_compile_metric_name rp10 \
--prior_A 0 \
--rank_topk 50 \
--do_validation \
--do_test \
--optimizer_name left-to-right \
--lm_config_path ./lm_config.json
Command line arguments are explained in the respective files.
If you want to speed up the runs, you can use multithreading (warning: this can mess up caching sometimes).
export DSP_NUM_THREADS=8
The results from run_irera.py are slightly different than those of compile_irera.py, most likely due to a minor bug in loading and saving models. We take the results of compile_irera.py as the official results we report in the paper.
To apply IReRa to a new task, you minimally need to add a new dataset and write a custom signature
Data loading logic is defined in src/data_loaders. Every loader should minimally return a validation and testing dataframe, where each row has a 'text' field (which is a string) and a 'label' field (which is a list of strings).
compile_irera expects a .txt file where each line is a label, via the --ontology_path argument. These labels can not contain commas, since this currently breaks embedding the labels in a comma-separated list. Make sure labels have no trailing spaces. Via --prior_path a dictionary needs to be supplied which maps labels to probabilities.
A signature tells an in-context learning module what its task is and what the inputs and outputs look like. You can think of it as a minimal zero-shot prompt for the task. All signatures are defined in src/programs/signatures.py, add your new signature here.
To add a new signature, simple subclass dspy.Signature with your custom fields and description. Add your new class to the supported_signatures dictionary at the bottom of src/programs/signatures.py so it can be accessed throughout the code.
Raw metrics are defined in src/metrics.py and are wrapped with DSPy logic in src/evaluators.py. When adding a metric, make sure to add it to the supported_metrics dictionary at the bottom of src/evaluators.py so it can be used throughout the code.
The goal of IReRa is to be modular and easily applicable to new tasks. To alter IReRA, you minimally need to write custom logic for (new) modules write custom optimizers which bootstrap your program.
Infer-Retrieve-Rank is defined in src/programs/infer_retrieve_rank.py. It is initialized with a config, defined in src/programs/config.py. You can write new programs or manipulate the behavior of IReRa by changing the python code in the forward method.
When you introduce new hyperparameters, make sure to add these to the config you are using. Otherwise these will not be saved and loaded.
Optimization strategies are defined in src/optimizer.py. When adding a new optimizer, make sure to add it to the supported_optimizers dictionary at the bottom of the file, so it can be accessed throughout the code.
Currently, optimizers are aware of which modules the to-optimize program has. This needs to be resolved so optimization strategies can be flexibly applied to different programs.
I am happy to take on collaborations! Feel free to contact me at the email defined in the paper, or by opening an issue or pull request on the GitHub page. Here are some issues we could work on:
Research:
Software Engineering:
src/programs/retrieve.py more efficientGet notified of future work by following @KarelDoostrlnck on Twitter.
If you found this repo useful or use Infer-Retrieve-Rank in your work, please cite us:
@article{d2024context,
title={In-Context Learning for Extreme Multi-Label Classification},
author={D'Oosterlinck, Karel and Khattab, Omar and Remy, Fran{\c{c}}ois and Demeester, Thomas and Develder, Chris and Potts, Christopher},
journal={arXiv preprint arXiv:2401.12178},
year={2024}
}


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号