xmc.dspy

xmc.dspy

Infer-Retrieve-Rank方法revolutionizing大规模多标签分类

Infer-Retrieve-Rank (IReRa)是一种创新的多标签分类方法,专门针对具有大量类别的任务。这个通用且模块化的程序通过预训练语言模型和检索器的交互,高效处理复杂的分类问题。IReRa仅需少量标记示例即可优化性能,无需模型微调。该项目提供完整文档,包括安装、数据处理、运行指南等,方便研究人员在各种语言模型推理和检索任务中应用。

Infer-Retrieve-Rank多标签分类极端多类别上下文学习语言模型Github开源项目
<p align="center"> <img align="center" src="docs/irera_logic.png" width="680px" /> </p> <p align="left">

Infer-Retrieve-Rank: In-Context Learning for Extreme Multi-Label classification

Resources:

  1. [Jan'23] Paper announcement thread & Code announcement thread
  2. [Jan'23] In-Context Learning for Extreme Multi-Label classification paper

Infer-Retrieve-Rank (IReRa) is a generic and modular program which specifies interactions between pretrained Language Models and Retrievers to efficiently solve multi-label classification tasks with an extreme amount of classes (≥10,000 classes). Using only ≅ 50 labeled input examples, IReRa can be optimized to achieve state-of-the-art performance, despite not being finetuned. This optimization generally involves having a strong, teacher Language Model (e.g. gpt4) solve the task and gather instructions or demonstrations that help a more efficient, student Language Model (e.g. llama-2) solve the task better. A user can easily specify which parts of the program are implemented using which LMs, to strike the perfect balance between cost and performance.

The goal of IReRa is to easily be applicable to a broad range of tasks involving inference with Language Models and Retrieval. To this end, this repository detangles (i) the logic of Infer-Retrieve-Rank, (ii) the prompts needed to adapt IReRa to a specific domain and (iii) optimization techniques to improve performance. All of this is made possible through the dspy programming model.

LM calls of our results are cached, meaning you can reproduce our runs without paying for any inference costs yourself.

Table of Contents

  1. Installation
  2. Load data
  3. Compile and run
  4. Apply to new tasks
  5. Writing custom programs
  6. Contributing
  7. Citation

1) Installation

Create the conda environment:

conda create -n xmc python=3.10
conda activate xmc

Install DSPy. Our work relies on an experimental branch of DSPy.

git clone -b irera --single-branch https://github.com/stanfordnlp/dspy.git
cd dspy/
git checkout 802f2d5f26c1a64d8aad6adbd8b4394b9c4bb743
pip install .
cd ..

Install the rest of the requirements:

pip install -r requirements.txt

(optional) Set up models if you plan to do new runs

All LM calls to reproduce our runs are cached. However, if you want to execute new calls you will need to set up OpenAI and local models.

Set your OpenAI API KEY:

export OPENAI_API_KEY=<your-key>

For local models (e.g. llama-2), set up a local Text Generation Interface (TGI) via these steps. Make sure to point the url field in lm_config.json to your TGI server.

2) Load data

Load the data and cache needed to reproduce our results.

bash scripts/load_data.sh
bash scripts/load_cache.sh

3) Compile and run

All compilation IReRa runs from our paper can be reproduced by running bash scripts/compile_left_to_right.sh or bash scripts/run_left_to_right.sh. We provide the resulting program state in results_precompiled/ so you can load our compiled IReRa programs.

Load our compiled IReRa for ESCO_TECH and evaluate:

python run_irera.py \
    --dataset_name esco_tech \
    --state_path ./results_precompiled/esco_tech_infer-retrieve-rank_00/program_state.json \
    --lm_config_path ./lm_config.json \
    --do_validation \
    --do_test 

Compile your own IReRa on ESCO_TECH and evaluate:

python compile_irera.py \
    --dataset_name esco_tech \
    --ontology_name esco \
    --prior_path ./data/esco/esco_priors.json \
    --ontology_path ./data/esco/skills_en_label.txt \
    --infer_signature_name infer_esco \
    --rank_signature_name rank_esco \
    --retriever_model_name sentence-transformers/all-mpnet-base-v2 \
    --infer_student_model_name llama-2-13b-chat \
    --infer_teacher_model_name gpt-3.5-turbo-instruct \
    --rank_student_model_name gpt-4-1106-preview \
    --rank_teacher_model_name gpt-4-1106-preview \
    --infer_compile_metric_name rp10 \
    --rank_compile_metric_name rp10 \
    --prior_A 0 \
    --rank_topk 50 \
    --do_validation \
    --do_test \
    --optimizer_name left-to-right \
    --lm_config_path ./lm_config.json 

Command line arguments are explained in the respective files.

If you want to speed up the runs, you can use multithreading (warning: this can mess up caching sometimes).

export DSP_NUM_THREADS=8

The results from run_irera.py are slightly different than those of compile_irera.py, most likely due to a minor bug in loading and saving models. We take the results of compile_irera.py as the official results we report in the paper.

4) Apply to new tasks

To apply IReRa to a new task, you minimally need to add a new dataset and write a custom signature

A) Adding a new dataset

Data loading logic is defined in src/data_loaders. Every loader should minimally return a validation and testing dataframe, where each row has a 'text' field (which is a string) and a 'label' field (which is a list of strings).

compile_irera expects a .txt file where each line is a label, via the --ontology_path argument. These labels can not contain commas, since this currently breaks embedding the labels in a comma-separated list. Make sure labels have no trailing spaces. Via --prior_path a dictionary needs to be supplied which maps labels to probabilities.

B) Writing custom signatures

A signature tells an in-context learning module what its task is and what the inputs and outputs look like. You can think of it as a minimal zero-shot prompt for the task. All signatures are defined in src/programs/signatures.py, add your new signature here.

To add a new signature, simple subclass dspy.Signature with your custom fields and description. Add your new class to the supported_signatures dictionary at the bottom of src/programs/signatures.py so it can be accessed throughout the code.

C) Adding new metrics

Raw metrics are defined in src/metrics.py and are wrapped with DSPy logic in src/evaluators.py. When adding a metric, make sure to add it to the supported_metrics dictionary at the bottom of src/evaluators.py so it can be used throughout the code.

5) Writing custom programs

The goal of IReRa is to be modular and easily applicable to new tasks. To alter IReRA, you minimally need to write custom logic for (new) modules write custom optimizers which bootstrap your program.

A) Writing custom logic

Infer-Retrieve-Rank is defined in src/programs/infer_retrieve_rank.py. It is initialized with a config, defined in src/programs/config.py. You can write new programs or manipulate the behavior of IReRa by changing the python code in the forward method.

When you introduce new hyperparameters, make sure to add these to the config you are using. Otherwise these will not be saved and loaded.

B) Writing custom optimizers

Optimization strategies are defined in src/optimizer.py. When adding a new optimizer, make sure to add it to the supported_optimizers dictionary at the bottom of the file, so it can be accessed throughout the code.

Currently, optimizers are aware of which modules the to-optimize program has. This needs to be resolved so optimization strategies can be flexibly applied to different programs.

6) Contributing

I am happy to take on collaborations! Feel free to contact me at the email defined in the paper, or by opening an issue or pull request on the GitHub page. Here are some issues we could work on:

Research:

  • Incorporate label definitions, synonyms, and hierarchy to improve performance
  • Applying IReRa as recommender systems (The Extreme Classification Repository has many such tasks)
  • Add ensembling strategies to IReRa to improve performance (both ensembling programs and ensembling different modules within those programs)
  • Add chunking / summarization strategies to deal with long inputs efficiently
  • Optimize different parts of the program for different metrics to improve end-to-end performance (e.g. optimize Infer-Retrieve for high Recall@50 and use Rank to improve Recall@10)
  • Figure out how to use best use labels for program output to bootstrap supervision on intermediate program steps for better optimization
  • Automatically pick the best LMs / retrievers from HuggingFace to implement a given module (AutoIReRa)

Software Engineering:

  • Add a HugginFace dataloader to apply IReRa to any multi-label classification task
  • Add a cli argument parsing class
  • Create a config for the Optimizer class
  • Make the Optimizer class agnostic of the implementation details of the program that gets optimized, so it can define a high-level strategy which gets compiled across many programs
  • Track amount of student and teacher calls during optimization so system-cost can be compared.
  • Make src/programs/retrieve.py more efficient
  • Track intermediate pipeline steps and log these traces for debugging
  • Use logging instead of print-statements, and dump logs to experiment file
  • Add RAG(atouille)
  • Control seeds in LM calls and data loaders

7) Citation

Get notified of future work by following @KarelDoostrlnck on Twitter.

If you found this repo useful or use Infer-Retrieve-Rank in your work, please cite us:

@article{d2024context,
  title={In-Context Learning for Extreme Multi-Label Classification},
  author={D'Oosterlinck, Karel and Khattab, Omar and Remy, Fran{\c{c}}ois and Demeester, Thomas and Develder, Chris and Potts, Christopher},
  journal={arXiv preprint arXiv:2401.12178},
  year={2024}
}

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多