Welcome aboard. With the growing technologies out in the world, we have seen how important Image Processing has become. This repository provides a complete understanding of the practical implementation of all the concepts to be known for a developer to start their Image Processing journey.
Before we jump into the concepts, let us once have a look at the definition of Image Processing.
Image processing is often viewed as arbitrarily manipulating an image to achieve an aesthetic standard or to support a preferred reality. However, image processing is more accurately defined as a means of translation between the human visual system and digital imaging devices. The human visual system does not perceive the world in the same manner as digital detectors, with display devices imposing additional noise and bandwidth restrictions. Salient differences between the human and digital detectors will be shown, along with some basic processing steps for achieving translation. Image processing must be approached in a manner consistent with the scientific method so that others may reproduce, and validate one's results. This includes recording and reporting processing actions and applying similar treatments to adequate control images.Src
There are two types of methods used for image processing namely, analog and digital image processing. Analog image processing can be used for hard copies like printouts and photographs. Various fundamentals of interpretation are used by the Image Analysts along with the visual techniques. Digital image processing deals with the manipulation of digital images through a digital computer. It is a subfield of signals and systems but focuses particularly on images. The three general phases that all types of data have to undergo while using digital techniques are
Fundamental Steps in Digital Image Processing - Rafael Gonzalez - 4th Edition Src
Important point to note while going through any concept is that the image is considered on a greyscale since color increases the complexity of the model. One may want to introduce an image processing tool using gray level images because of the format of gray-level images because the inherent complexity of gray-level images is lower than that of color images. In most cases. after presenting a gray-level image method, it can be extended to color images.
For getting deeper insights into any of the concepts, I suggest going through Digital Image Processing, Rafael C. Gonzalez • Richard E. Woods, 4th Edition
From here on I will be referring Digital Image Processing as DIP.
Disclaimer: I am not the original author of the images used. They have been taken from various Image Processing sites. I have mentioned all of the referenced sites in resources. Pardon if I missed any.
The following is the order I suggest to look into the concepts.
Image averaging is a DIP technique that is used to enhance the images which are corrupted with random noise. The arithmetic mean of the intensity values for each pixel position is computed for a set of images of the same view field. The basic formula behind it is.

The images are rotated using the self-defined code for rotation instead of the OpenCV inbuilt function. When an image is rotated by 45 degrees for 8 times, it does not produce the same result as when it is rotated by 90 degrees for 4 times. This is because, when an image is rotated 45 degrees, during the rotation more pixels values for the new position of the pixels are to be calculated. And calculating these new pixel positions and their intensities uses interpolation which is an approximation method. So when an image is rotated by 90 degrees there is a smoother transition since fewer no of approximations are to be made for the new pixel positions and their intensities.
A clear example is shown below
| Rotated by 45 deg - 8 times | Rotated by 90 deg - 4 times |
|---|---|
![]() | ![]() |
Interpolation is used in tasks such as zooming, shrinking, rotating, and geometrically correcting digital images. It is the process of using known data to estimate values at unknown locations. So for giving the chance to estimate values, we will do some transformation, here it is a rotation by 45 degrees. The 3 interpolations we see here are:
| Nearest Neighbour | Bilinear | Bicubic |
|---|---|---|
![]() | ![]() | ![]() |
Here you can see a slight variation between the 3 images. The smoothness gets better from left to right. Since Bicubic interpolation uses a higher-order equation it can capture features in-depth.
As mentioned here, there are two methods of mapping, the first, called forward mapping, scans through the source image pixel by pixel, and copies them to the appropriate place in the destination image. The second, reverse mapping, goes through the destination image pixel by pixel and samples the correct pixel from the source image. The most important feature of inverse mapping is that every pixel in the destination image gets set to something appropriate. In the forward mapping case, some pixels in the destination might not get painted and would have to be interpolated. We calculate the image deformation as a reverse mapping.
| Original | Nearest Neighbour - Inverse Mapping |
|---|---|
![]() | ![]() |
We have seen the basic transformations like rotation and scaling. Now let's see one more basic transformation known as translation.
| Original | Translation |
|---|---|
![]() | ![]() |
The perspective transformation deals with the conversion of a 3D image into a 2D image for getting better insights about the required information. The 3D object co-ordinates are changed into the co-ordinates wrt world frame of reference and according to camera coordinate frame reference then continued by changing into Image Plane 2D coordinates and then to the pixel coordinates.
| Distorted Image | OpenCV - Perspective Transf Function | Manual Correction |
|---|---|---|
![]() | ![]() | ![]() |
This is just an example of using custom transformations for the required purpose. In the below example I have tried to extract the root part from the image.
| Original | Transformed |
|---|---|
![]() | ![]() |
One of the grey-level transformations is Logarithmic Transformation. It is defined as s = c*log(r+1) , where 's' and 'r' are the pixel values of the output and the input image respectively and 'c' is a constant.
| Original | Log-Transformed |
|---|---|
![]() | ![]() |
Contrast Stretching is a simple image enhancement technique that attempts to improve the contrast in an image by stretching the range of intensity values it contains to span a desired range of values.
| Original | Contrast Stretched |
|---|---|
![]() | ![]() |
Shading Correction is used for correcting the parts of an image which are having some faults due to multiple reasons like, camera light obstruction. So correcting the image for the required purpose is essential. So in this example, we have used a faulty image of a chessboard and corrected the image. Gaussian Blur is used to correct the shading in the corner of the image.
| Original | Corrected Image |
|---|---|
![]() | ![]() |
A Laplacian filter is an edge detector which computes the second derivatives of an image, measuring the rate at which the first derivatives change. That determines if a change in adjacent pixel values is from an edge or continuous progression.
A laplacian filter or kernel looks like this:
[0, 1, 0]
[1, -4, 1]
[0, 1, 0]
But a point to note is that Laplacian is very sensitive to noise. It even detects the edges for the noise in the image.
| Original | Laplacian Filter |
|---|---|
![]() | ![]() |
As you can see from the above example, the Laplacian kernel is very sensitive to noise. Hence we use the Gaussian Filter to first smoothen the image and remove the


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果 的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号