TrOCR 模型是一个编码器-解码器模型,由图像 Transformer 充当编码器,文本 Transformer 充当解码器。图像编码器是使用 BEiT 的权重进行初始化的,而文本解码器则是使用 RoBERTa 的权重进行初始化。
图像被呈现给模型作为一系列固定大小的图块(分辨率为 16x16),这些图块被线性嵌入。在将序列提供给 Transformer 编码器的层之前,还会添加绝对位置嵌入。接下来,Transformer 文本解码器自回归地生成标记。
(TrOCR 架构,摘自原始论文)
克隆存储库并确保已安装 conda 或 miniconda,然后进入克隆存储库的目录并运行以下命令:
conda env create -n trocr --file environment.yml conda activate trocr
这将安装所有必要的库。
在没有 GPU 的情况下进行训练:
强烈建议使用 CUDA GPU,但也可以在 CPU 上完成所有操作。在这种情况下,请使用 environment-cpu.yml 文件进行安装。如果进程终止时出现警告 "killed",请减小批处理大小以适应工作内存。
有三种模式:推理(inference)、验证(validation)和训练(training)。它们三者都可以从正确路径中的本地模型开始(参见 src/constants/paths),也可以使用来自 Huggingface 的预训练模型。默认情况下,推理和验证使用本地模型,而训练则默认使用 Huggingface 模型。
· 推理(预测):
python -m src predict <image_files> # predict image files using the trained local model python -m src predict data/img1.png data/img2.png # list all image files python -m src predict data/* # also works with shell expansion python -m src predict data/* --no-local-model # uses the pretrained huggingface model
· 验证:
python -m src validate # uses pretrained local model python -m src validate --no-local-model # loads pretrained model from huggingface
· 训练:
python -m src train # starts with pretrained model from huggingface python -m src train --local-model # starts with pretrained local model
对于验证和训练,输入图像应位于 train 和 val 目录中,标签应位于 gt/labels.csv 文件中。在 CSV 文件中,每一行应包括图像名称,然后以结束,例如 img1.png, a(如有必要,用引号括起来)。
如果要从其他位置读取标签也很简单。只需在 src/dataset.py 中的 load_filepaths_and_labels 函数中添加必要的代码。
要选择训练数据的子样本作为验证数据,可以使用以下命令:
find train -type f | shuf -n <num of val samples> | xargs -I '{}' mv {} val
如果您想将预测结果作为更大项目的一部分使用,可以直接使用 main 中 TrocrPredictor 提供的接口。为此,请确保以 Python 模块的形式运行所有代码。
以下是代码示例:
from PIL import Image from trocr.src.main import TrocrPredictor # load images image_names = ["data/img1.png", "data/img2.png"] images = [Image.open(img_name) for img_name in image_names] # directly predict on Pillow Images or on file names model = TrocrPredictor() predictions = model.predict_images(images) predictions = model.predict_for_file_names(image_names) # print results for i, file_name in enumerate(image_names): print(f'Prediction for {file_name}: {predictions[i]}')
通常情况下,应该很容易调整代码以适应其他输入格式或用例。学习率、批量大小、训练周期数、日志记录、单词长度:src/configs/constants.py输入路径、模型检查点路径:src/configs/paths.py不同的标签格式:src/dataset.py:load_filepaths_and_labels单词长度常量非常重要。为了方便批量训练,所有标签都需要填充到相同的长度。可能需要进行一些实验。对我们来说,填充到 8 的长度效果很好。
如果要更改模型的特定内容,可以向 transformers 接口提供一个 TrOCRConfig 对象。有关更多详细信息,请参阅 https://huggingface.co/docs/transformers/model_doc/trocr#transformers.TrOCRConfig
https://github.com/rsommerfeld/trocr#training-without-gpu
关注「开源AI项目落地」公众号
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可 生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号