
大语言模型知识编辑研究最新进展汇总
KnowledgeEditingPapers汇总大语言模型知识编辑领域的最新研究成果,包括方法、分析和工具。项目涵盖参数保持、参数修改等技术,提供教程、综述和基准数据集,全面展示该领域进展和挑战。持续更新的内容为研究者和开发者提供了丰富的学习资源。
Must-read papers on knowledge editing for large language models.
New Reports
| Report | Topic | PPT Resource |
|---|---|---|
| IJCAI2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
| CCL2024 tutorial | 大语言模型知识机理、融合与编辑 | BaiduPan & Google Drive |
| COLING2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
| 北京智源大会 | 大语言模型知识机理与编辑问题 | BaiduPan |
| VALSE2024 tutorial | Knowledge Mechanism and Editing for Large Language Models | Google Drive |
| AAAI2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
Knowledge Editing is a compelling field of research that focuses on facilitating efficient modifications to the behavior of models, particularly foundation models. The aim is to implement these changes within a specified scope of interest without negatively affecting the model's performance across a broader range of inputs.
Knowledge Editing has strong connections with following topics.
This is a collection of research and review papers of Knowledge Editing. Any suggestions and pull requests are welcome for better sharing of latest research progress.
Knowledge Editing for Large Language Models, AAAI 2024 Tutorial <br /> Ningyu Zhang, Jia-Chen Gu, Yunzhi Yao, Zhen Bi, Shumin Deng. [Github] [Google Drive] [Baidu Pan]
Editing Large Language Models, AACL 2023 Tutorial <br /> Ningyu Zhang, Yunzhi Yao, Shumin Deng. [Github] [Google Drive] [Baidu Pan]
Knowledge Mechanisms in Large Language Models: A Survey and Perspective <br /> Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao, Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang. [paper]
A Comprehensive Study of Knowledge Editing for Large Language Models <br /> Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen. [paper][benchmark][code]
Editing Large Language Models: Problems, Methods, and Opportunities, EMNLP 2023 Main Conference Paper <br /> Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, Ningyu Zhang. [paper][code]
Knowledge Editing for Large Language Models: A Survey <br /> Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, Jundong Li. [paper]
A Survey on Knowledge Editing of Neural Networks <br /> Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai, Kay Rottmann, Davide Bernardi. [paper]
Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges <br /> Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, Weiqiang Zhang. [paper]
<div align=center><img src="./img/overview.jpg" width="100%" height="80%" /></div>Memory-Based Model Editing at Scale (ICML 2022) <br /> Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, Chelsea Finn. [paper] [code] [demo]
Fixing Model Bugs with Natural Language Patches. (EMNLP 2022) <br /> Shikhar Murty, Christopher D. Manning, Scott M. Lundberg, Marco Túlio Ribeiro. [paper] [code]
MemPrompt: Memory-assisted Prompt Editing with User Feedback. (EMNLP 2022) <br /> Aman Madaan, Niket Tandon, Peter Clark, Yiming Yang. [paper] [code] [page] [video]
Large Language Models with Controllable Working Memory. <br /> Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu, Sanjiv Kumar. [paper]
Can We Edit Factual Knowledge by In-Context Learning? <br /> Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, Baobao Chang. [paper]
Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge <br /> Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, Eunsol Choi. [paper]
MQUAKE: Assessing Knowledge Editing inLanguage Models via Multi-Hop Questions <br> Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen.<br />[paper] [code]
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering <br> Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, Xin Wang. <br /> [paper] [code]
Retrieval-augmented Multilingual Knowledge Editing <br> Weixuan Wang, Barry Haddow, Alexandra Birch. [paper] [code]
MEMORYLLM: Towards Self-Updatable Large Language Models <br> Yu Wang, Xiusi Chen, Jingbo Shang, Julian McAuley. [paper]
DeepEdit: Knowledge Editing as Decoding with Constraints <br> Yiwei Wang,Muhao Chen,Nanyun Peng, Kai-Wei Chang. [paper]
Stable Knowledge Editing in Large Language Models. <br /> Zihao Wei,Liang Pang,Hanxing Ding,Jingcheng Deng,Huawei Shen,Xueqi Cheng. [paper]
Knowledge Editing on Black-box Large Language Models. <br /> Xiaoshuai Song, Zhengyang Wang, Keqing He, Guanting Dong, Jinxu Zhao, Weiran Xu. [paper]
Learning to Edit: Aligning LLMs with Knowledge Editing. <br /> Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang, Lifeng Shang, Ruiming Tang, Qun Liu, Wei Wang. [paper]
Robust and Scalable Model Editing for Large Language Models. <br /> Yingfa Chen, Zhengyan Zhang, Xu Han, Chaojun Xiao, Zhiyuan Liu, Chen Chen, Kuai Li, Tao Yang, Maosong Sun. [paper]
Retrieval-Enhanced Knowledge Editing for Multi-Hop Question Answering in Language Models. <br /> Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, Ninghao Liu. [paper]
In-Context Editing: Learning Knowledge from Self-Induced Distributions. <br /> Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, Zilong Zheng. [paper]


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界 的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号