KnowledgeEditingPapers

KnowledgeEditingPapers

大语言模型知识编辑研究最新进展汇总

KnowledgeEditingPapers汇总大语言模型知识编辑领域的最新研究成果,包括方法、分析和工具。项目涵盖参数保持、参数修改等技术,提供教程、综述和基准数据集,全面展示该领域进展和挑战。持续更新的内容为研究者和开发者提供了丰富的学习资源。

知识编辑大语言模型论文综述模型更新人工智能Github开源项目

Knowledge Editing for LLMs Papers

Awesome License: MIT

Must-read papers on knowledge editing for large language models.

🔔 News

  • New Reports

    ReportTopicPPT Resource
    IJCAI2024 tutorialKnowledge Editing for Large Language ModelsGoogle Drive
    CCL2024 tutorial大语言模型知识机理、融合与编辑BaiduPan & Google Drive
    COLING2024 tutorialKnowledge Editing for Large Language ModelsGoogle Drive
    北京智源大会大语言模型知识机理与编辑问题BaiduPan
    VALSE2024 tutorialKnowledge Mechanism and Editing for Large Language ModelsGoogle Drive
    AAAI2024 tutorialKnowledge Editing for Large Language ModelsGoogle Drive
<!-- - **2024-02-20 The AAAI2024 tutorial "*Knowledge Editing for Large Language Models*" has been canceled since speakers cannot present in person, we make this ppt[[Github](https://github.com/zjunlp/KnowledgeEditingPapers/blob/main/AAAI2024%40Tutorial_Knowledge%20Editing%20for%20LLMs.pdf)] [[Google Drive](https://drive.google.com/file/d/1fkTbVeRJSWmU7fBDeNf1OhHEkLSofQde/view?usp=sharing)] [[Baidu Pan](https://pan.baidu.com/s/1oJYgaMnxWIBE4kIcJuMSKg?pwd=p9j5)] available to the community**. -->

🔍 Contents


🌟 Why Knowledge Editing?

Knowledge Editing is a compelling field of research that focuses on facilitating efficient modifications to the behavior of models, particularly foundation models. The aim is to implement these changes within a specified scope of interest without negatively affecting the model's performance across a broader range of inputs.

Keywords

Knowledge Editing has strong connections with following topics.

  • Updating and fixing bugs for large language models
  • Language models as knowledge base, locating knowledge in large language models
  • Lifelong learning, unlearning and etc.
  • Security and privacy for large language models
<div align=center><img src="./img/ke.png" width="100%" height="80%" /></div>

Comparisons of different technologies

<div align=center><img src="./img/comparison.png" width="60%" height="48%" /></div>

📜 Resources

This is a collection of research and review papers of Knowledge Editing. Any suggestions and pull requests are welcome for better sharing of latest research progress.

Tutorials

Knowledge Editing for Large Language Models, AAAI 2024 Tutorial <br /> Ningyu Zhang, Jia-Chen Gu, Yunzhi Yao, Zhen Bi, Shumin Deng. [Github] [Google Drive] [Baidu Pan]

Editing Large Language Models, AACL 2023 Tutorial <br /> Ningyu Zhang, Yunzhi Yao, Shumin Deng. [Github] [Google Drive] [Baidu Pan]

Surveys

Knowledge Mechanisms in Large Language Models: A Survey and Perspective <br /> Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao, Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang. [paper]

A Comprehensive Study of Knowledge Editing for Large Language Models <br /> Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen. [paper][benchmark][code]

Editing Large Language Models: Problems, Methods, and Opportunities, EMNLP 2023 Main Conference Paper <br /> Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, Ningyu Zhang. [paper][code]

Knowledge Editing for Large Language Models: A Survey <br /> Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, Jundong Li. [paper]

A Survey on Knowledge Editing of Neural Networks <br /> Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai, Kay Rottmann, Davide Bernardi. [paper]

Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges <br /> Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, Weiqiang Zhang. [paper]

<div align=center><img src="./img/overview.jpg" width="100%" height="80%" /></div>

Methods

Preserve Parameters

Memory-based
  1. Memory-Based Model Editing at Scale (ICML 2022) <br /> Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, Chelsea Finn. [paper] [code] [demo]

  2. Fixing Model Bugs with Natural Language Patches. (EMNLP 2022) <br /> Shikhar Murty, Christopher D. Manning, Scott M. Lundberg, Marco Túlio Ribeiro. [paper] [code]

  3. MemPrompt: Memory-assisted Prompt Editing with User Feedback. (EMNLP 2022) <br /> Aman Madaan, Niket Tandon, Peter Clark, Yiming Yang. [paper] [code] [page] [video]

  4. Large Language Models with Controllable Working Memory. <br /> Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu, Sanjiv Kumar. [paper]

  5. Can We Edit Factual Knowledge by In-Context Learning? <br /> Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, Baobao Chang. [paper]

  6. Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge <br /> Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, Eunsol Choi. [paper]

  7. MQUAKE: Assessing Knowledge Editing inLanguage Models via Multi-Hop Questions <br> Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen.<br />[paper] [code]

  8. PokeMQA: Programmable knowledge editing for Multi-hop Question Answering <br> Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, Xin Wang. <br /> [paper] [code]

  9. Retrieval-augmented Multilingual Knowledge Editing <br> Weixuan Wang, Barry Haddow, Alexandra Birch. [paper] [code]

  10. MEMORYLLM: Towards Self-Updatable Large Language Models <br> Yu Wang, Xiusi Chen, Jingbo Shang, Julian McAuley. [paper]

  11. DeepEdit: Knowledge Editing as Decoding with Constraints <br> Yiwei Wang,Muhao Chen,Nanyun Peng, Kai-Wei Chang. [paper]

  12. Stable Knowledge Editing in Large Language Models. <br /> Zihao Wei,Liang Pang,Hanxing Ding,Jingcheng Deng,Huawei Shen,Xueqi Cheng. [paper]

  13. Knowledge Editing on Black-box Large Language Models. <br /> Xiaoshuai Song, Zhengyang Wang, Keqing He, Guanting Dong, Jinxu Zhao, Weiran Xu. [paper]

  14. Learning to Edit: Aligning LLMs with Knowledge Editing. <br /> Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang, Lifeng Shang, Ruiming Tang, Qun Liu, Wei Wang. [paper]

  15. Robust and Scalable Model Editing for Large Language Models. <br /> Yingfa Chen, Zhengyan Zhang, Xu Han, Chaojun Xiao, Zhiyuan Liu, Chen Chen, Kuai Li, Tao Yang, Maosong Sun. [paper]

  16. Retrieval-Enhanced Knowledge Editing for Multi-Hop Question Answering in Language Models. <br /> Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, Ninghao Liu. [paper]

  17. In-Context Editing: Learning Knowledge from Self-Induced Distributions. <br /> Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, Zilong Zheng. [paper]

Additional Parameters

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多