
大语言模型知识编辑研究最新进展汇总
KnowledgeEditingPapers汇总大语言模型知识编辑领域的最新研究成果,包括方法、分析和工具。项目涵盖参数保持、参数修改等技术,提供教程、综述和基准数据集,全面展示该领域进展和挑战。持续更新的内容为研究者和开发者提供了丰富的学习资源。
Must-read papers on knowledge editing for large language models.
New Reports
| Report | Topic | PPT Resource |
|---|---|---|
| IJCAI2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
| CCL2024 tutorial | 大语言模型知识机理、融合与编辑 | BaiduPan & Google Drive |
| COLING2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
| 北京智源大会 | 大语言模型知识机理与编辑问题 | BaiduPan |
| VALSE2024 tutorial | Knowledge Mechanism and Editing for Large Language Models | Google Drive |
| AAAI2024 tutorial | Knowledge Editing for Large Language Models | Google Drive |
Knowledge Editing is a compelling field of research that focuses on facilitating efficient modifications to the behavior of models, particularly foundation models. The aim is to implement these changes within a specified scope of interest without negatively affecting the model's performance across a broader range of inputs.
Knowledge Editing has strong connections with following topics.
This is a collection of research and review papers of Knowledge Editing. Any suggestions and pull requests are welcome for better sharing of latest research progress.
Knowledge Editing for Large Language Models, AAAI 2024 Tutorial <br /> Ningyu Zhang, Jia-Chen Gu, Yunzhi Yao, Zhen Bi, Shumin Deng. [Github] [Google Drive] [Baidu Pan]
Editing Large Language Models, AACL 2023 Tutorial <br /> Ningyu Zhang, Yunzhi Yao, Shumin Deng. [Github] [Google Drive] [Baidu Pan]
Knowledge Mechanisms in Large Language Models: A Survey and Perspective <br /> Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao, Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang. [paper]
A Comprehensive Study of Knowledge Editing for Large Language Models <br /> Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen. [paper][benchmark][code]
Editing Large Language Models: Problems, Methods, and Opportunities, EMNLP 2023 Main Conference Paper <br /> Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, Ningyu Zhang. [paper][code]
Knowledge Editing for Large Language Models: A Survey <br /> Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, Jundong Li. [paper]
A Survey on Knowledge Editing of Neural Networks <br /> Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai, Kay Rottmann, Davide Bernardi. [paper]
Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges <br /> Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, Weiqiang Zhang. [paper]
<div align=center><img src="./img/overview.jpg" width="100%" height="80%" /></div>Memory-Based Model Editing at Scale (ICML 2022) <br /> Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, Chelsea Finn. [paper] [code] [demo]
Fixing Model Bugs with Natural Language Patches. (EMNLP 2022) <br /> Shikhar Murty, Christopher D. Manning, Scott M. Lundberg, Marco Túlio Ribeiro. [paper] [code]
MemPrompt: Memory-assisted Prompt Editing with User Feedback. (EMNLP 2022) <br /> Aman Madaan, Niket Tandon, Peter Clark, Yiming Yang. [paper] [code] [page] [video]
Large Language Models with Controllable Working Memory. <br /> Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu, Sanjiv Kumar. [paper]
Can We Edit Factual Knowledge by In-Context Learning? <br /> Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, Baobao Chang. [paper]
Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge <br /> Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, Eunsol Choi. [paper]
MQUAKE: Assessing Knowledge Editing inLanguage Models via Multi-Hop Questions <br> Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen.<br />[paper] [code]
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering <br> Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, Xin Wang. <br /> [paper] [code]
Retrieval-augmented Multilingual Knowledge Editing <br> Weixuan Wang, Barry Haddow, Alexandra Birch. [paper] [code]
MEMORYLLM: Towards Self-Updatable Large Language Models <br> Yu Wang, Xiusi Chen, Jingbo Shang, Julian McAuley. [paper]
DeepEdit: Knowledge Editing as Decoding with Constraints <br> Yiwei Wang,Muhao Chen,Nanyun Peng, Kai-Wei Chang. [paper]
Stable Knowledge Editing in Large Language Models. <br /> Zihao Wei,Liang Pang,Hanxing Ding,Jingcheng Deng,Huawei Shen,Xueqi Cheng. [paper]
Knowledge Editing on Black-box Large Language Models. <br /> Xiaoshuai Song, Zhengyang Wang, Keqing He, Guanting Dong, Jinxu Zhao, Weiran Xu. [paper]
Learning to Edit: Aligning LLMs with Knowledge Editing. <br /> Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang, Lifeng Shang, Ruiming Tang, Qun Liu, Wei Wang. [paper]
Robust and Scalable Model Editing for Large Language Models. <br /> Yingfa Chen, Zhengyan Zhang, Xu Han, Chaojun Xiao, Zhiyuan Liu, Chen Chen, Kuai Li, Tao Yang, Maosong Sun. [paper]
Retrieval-Enhanced Knowledge Editing for Multi-Hop Question Answering in Language Models. <br /> Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, Ninghao Liu. [paper]
In-Context Editing: Learning Knowledge from Self-Induced Distributions. <br /> Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, Zilong Zheng. [paper]


免费创建高清无水印Sora视频
Vora是一个 免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号