luminaire

luminaire

开源时间序列异常检测库

Luminaire是一个开源的Python库,专门用于时间序列数据的异常检测和预测。它集成了数据预处理、建模和配置优化功能,可自动处理各类时间序列数据。该库支持批处理和流式数据监控,能识别相关性和季节性模式,并适应数据随时间的变化。Luminaire设计简单易用,仅需少量配置即可实现高效的异常检测。

Luminaire异常检测时间序列机器学习开源库Github开源项目
<!-- Logo & Title --> <p align="center"> <img width=450 src="https://yellow-cdn.veclightyear.com/0a4dffa0/7bb445de-8bd9-49da-bc6e-8396064ba8f6.svg" alt="Luminaire"></p> <h3 align="center">一个无需人工干预的异常检测库</h3> <!-- Badges Start-->

PyPI version PyPI - Python Version License build publish docs

<!-- Badges End -->

目录

什么是Luminaire

Luminaire是一个用于监控时间序列数据的Python包,提供基于机器学习的解决方案。Luminaire提供了多种异常检测和预测功能,这些功能考虑了数据中的相关性和季节性模式,以及随时间变化的不可控变化。

快速开始

使用pipPyPI安装Luminaire

pip install luminaire

在Python中导入luminaire模块

import luminaire

查看示例以开始使用。另外,请参阅Luminaire文档以获取方法和用法的详细描述。

时间序列异常检测工作流程

Luminaire流程

Luminaire异常检测工作流程可以分为3个主要组件:

数据预处理和分析组件

在对时间序列进行异常检测模型训练之前,可以调用此组件进行数据准备。这一步应用了多种方法,使异常检测更加准确和可靠,包括缺失数据插补、识别并从训练数据中移除最近的异常值、必要的数学转换,以及基于最近变点的数据截断。它还生成分析信息(历史变点、趋势变化等),这些信息在训练过程中会被考虑。

时间序列数据的分析信息可用于监控数据漂移和不规则的长期波动。

建模组件

此组件根据用户指定的配置或优化配置(参见Luminaire超参数优化)执行时间序列模型训练。Luminaire模型训练集成了不同的结构化时间序列模型以及基于过滤的模型。有关更多信息,请参阅Luminaire异常检测

Luminaire建模步骤可以在数据预处理和分析步骤之后调用,以在训练之前进行必要的数据准备。

配置优化组件

Luminaire与配置优化的集成实现了一个无需人工干预的异常检测过程,用户只需为监控任何类型的时间序列数据提供最少的配置。这一步可以与预处理和建模相结合,用于任何自动配置的异常检测用例。有关详细说明,请参阅完全自动异常检测

高频时间序列的异常检测

Luminaire也可以监控一段时间窗口内的一组数据点,而不是跟踪单个数据点。这种方法非常适合流式用例,其中持续的波动比单个波动更令人关注。有关详细信息,请参阅流数据的异常检测

示例

批量时间序列监控

import pandas as pd from luminaire.optimization.hyperparameter_optimization import HyperparameterOptimization from luminaire.exploration.data_exploration import DataExploration data = pd.read_csv('输入时间序列数据的路径') # 输入数据应该有一个时间列作为数据框的索引列,以及一个名为'raw'的值列 # 优化 hopt_obj = HyperparameterOptimization(freq='D') opt_config = hopt_obj.run(data=data) # 分析 de_obj = DataExploration(freq='D', **opt_config) training_data, pre_prc = de_obj.profile(data) # 识别模型 model_class_name = opt_config['LuminaireModel'] module = __import__('luminaire.model', fromlist=['']) model_class = getattr(module, model_class_name) # 训练 model_object = model_class(hyper_params=opt_config, freq='D') success, model_date, trained_model = model_object.train(data=training_data, **pre_prc) # 评分 trained_model.score(100, '2021-01-01')

流式时间序列监控

import pandas as pd from luminaire.model.window_density import WindowDensityHyperParams, WindowDensityModel from luminaire.exploration.data_exploration import DataExploration data = pd.read_csv('输入时间序列数据的路径') # 输入数据应该有一个时间列作为数据框的索引列,以及一个名为'raw'的值列 # 配置规范和分析 config = WindowDensityHyperParams().params de_obj = DataExploration(**config) data, pre_prc = de_obj.stream_profile(df=data) config.update(pre_prc) # 训练 wdm_obj = WindowDensityModel(hyper_params=config) success, training_end, model = wdm_obj.train(data=data) # 评分 score, scored_window = model.score(scoring_data) # scoring_data 是一个时间窗口内的数据,而不是单个数据点

贡献

想要帮助改进 Luminaire 吗?查看我们的贡献文档

引用

如果将 Luminaire 用于任何研究目的或科学出版物,请引用以下文章:

Chakraborty, S., Shah, S., Soltani, K., Swigart, A., Yang, L., & Buckingham, K. (2020, December). Building an Automated and Self-Aware Anomaly Detection System. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 1465-1475). IEEE. (arxiv 链接)

其他有用资源

  • Chakraborty, S., Shah, S., Soltani, K., & Swigart, A. (2019, December). Root Cause Detection Among Anomalous Time Series Using Temporal State Alignment. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 523-528). IEEE. (arxiv 链接)

博客

开发团队

Luminaire 由 Sayan ChakrabortySmit ShahKiumars Soltani、[Luyao Yang](https://github.com/zillow/luminaire/blob/master/ https://github.com/snazzyfox)、[Anna Swigart](https://github.com/annaswigart)、[Kyle Buckingham](https://github.com/kylebuckingham) 以及 Zillow Group A.I. 团队的许多其他贡献者开发和维护。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多