This repository contains a list of papers on the Graph Data Augmentation, we categorize them based on their learning objectives and tasks.
We will try to make this list updated. If you found any error or any missed paper, please don't hesitate to open an issue or pull request.
Note by Tong (April 2024): I've been quite busy these days and it's kinda hard for me to keep track of all the recent literature. Hence, this list is probably a bit outdated since this year (2024), and any community contribution would be greatly appreciated :)
Graph Data Augmentation for Graph Machine Learning: A Survey.
Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günneman, Neil Shah, and Meng Jiang.
@article{zhao2022graph, title={Graph Data Augmentation for Graph Machine Learning: A Survey}, author={Zhao, Tong and Jin, Wei and Liu, Yozen and Wang, Yingheng and Liu, Gang and Günneman, Stephan and Shah, Neil and Jiang, Meng}, journal={IEEE Data Engineering Bulletin}, year={2023} }
Half-Hop: a Graph Upsampling Approach for Slowing Down Message Passing, in ICML 2023. [pdf]
Local Augmentation for Graph Neural Networks, in ICML 2022. [pdf]
Training Robust Graph Neural Networks with Topology Adaptive Edge Dropping, in arXiv 2021. [pdf]
FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning, in arXiv 2021. [pdf] [code]
Topological Regularization for Graph Neural Networks Augmentation, in arXiv 2021. [pdf]
Semi-Supervised and Self-Supervised Classification with Multi-View Graph Neural Networks, in CIKM 2021. [pdf]
Metropolis-Hastings Data Augmentation for Graph Neural Networks, in NeurIPS 2021. [pdf]
Action Sequence Augmentation for Early Graph-based Anomaly Detection, in CIKM 2021. [pdf] [code]
Data Augmentation for Graph Neural Networks, in AAAI 2021. [pdf] [code]
Automated Graph Representation Learning for Node Classification, in IJCNN 2021. [pdf]
Mixup for Node and Graph Classification, in The WebConf 2021. [pdf] [code]
Heterogeneous Graph Neural Network via Attribute Completion, in The WebConf 2021. [pdf]
FLAG: Adversarial Data Augmentation for Graph Neural Networks, in arXiv 2020. [pdf] [code]
GraphMix: Improved Training of GNNs for Semi-Supervised Learning, in arXiv 2020. [pdf] [code]
Robust Graph Representation Learning via Neural Sparsification, in ICML 2020. [pdf]
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, in ICLR 2020. [pdf] [code]
Graph Structure Learning for Robust Graph Neural Networks, in KDD 2020. [pdf] [code]
Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View, in AAAI 2020. [pdf]
Diffusion Improves Graph Learning, in NeurIPS 2019. [pdf] [code]
Data-Centric Learning from Unlabeled Graphs with Diffusion Model, in NeurIPS 2023. [pdf] [code]
Automated Data Augmentations for Graph Classification, in ICLR 2023. [pdf]
Semi-Supervised Graph Imbalanced Regression, in KDD 2023. [pdf] [code]
G-Mixup: Graph Data Augmentation for Graph Classification, in ICML 2022. [pdf] [code]
Graph Rationalization with Environment-based Augmentations, in KDD 2022. [pdf] [code]
Graph Augmentation Learning, in arXiv 2022. [pdf]
GAMS: Graph Augmentation with Module Swapping, in arXiv 2022. [pdf]
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation, in AAAI 2022. [pdf]
ifMixup: Towards Intrusion-Free Graph Mixup for Graph Classification, in arXiv, 2021. [pdf]
Mixup for Node and Graph Classification, in The WebConf 2021. [pdf] [code]
MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph, in KDD 2021. [pdf] [code]
FLAG: Adversarial Data Augmentation for Graph Neural Networks, in arXiv 2020. [pdf] [code]
GraphCrop: Subgraph Cropping for Graph Classification, in arXiv 2020. [pdf]
M-Evolve: Structural-Mapping-Based Data Augmentation for Graph Classification, in CIKM 2020 [pdf] and IEEE TNSE 2021. [pdf]
Knowledge Graph Completion with Counterfactual Augmentation, in TheWebConf 2023. [pdf]
Learning from Counterfactual Links for Link Prediction, in ICML 2022. [pdf] [code]
Adaptive Data Augmentation on Temporal Graphs, in NeurIPS 2021. [pdf]
FLAG: Adversarial Data Augmentation for Graph Neural Networks, in arXiv 2020. [pdf] [code]
Spectral Augmentation for Self-Supervised Learning on Graphs, in ICLR 2023. [pdf]
Graph Self-supervised Learning with Accurate Discrepancy Learning, in NeurIPS 2022. [pdf] [code]
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative, in NeurIPS 2022. [code]
Learning Graph Augmentations to Learn Graph Representations, in arXiv 2022. [pdf] [code]
Fair Node Representation Learning via Adaptive Data Augmentation, in arXiv 2022. [pdf]
Large-Scale Representation Learning on Graphs via Bootstrapping, in ICLR 2022. [pdf] [code]
Augmentations in Graph Contrastive Learning: Current Methodological Flaws & Towards Better Practices, in The WebConf 2022. [pdf]
Contrastive Self-supervised Sequential Recommendation with Robust Augmentation, in arXiv 2021. [pdf]
Collaborative Graph Contrastive Learning: Data Augmentation Composition May Not be Necessary for Graph Representation Learning, in arXiv 2021. [pdf]
Molecular Graph Contrastive Learning with Parameterized Explainable Augmentations, in BIBM 2021. [pdf]
Self-Supervised GNN that Jointly Learns to Augment, in NeurIPS Workshop 2021. [pdf]
InfoGCL: Information-Aware Graph Contrastive Learning, in NeurIPS 2021. [pdf]
Adversarial Graph Augmentation to Improve Graph Contrastive Learning, in NeurIPS 2021. [pdf] [code]
Graph Contrastive Learning with Adaptive Augmentation, in The WebConf 2021. [pdf] [code]
Semi-Supervised and Self-Supervised Classification with Multi-View Graph Neural Networks, in CIKM 2021. [pdf]
Graph Contrastive Learning Automated, in ICML 2021. [pdf] [code]
Graph Data Augmentation based on Adaptive Graph Convolution for Skeleton-based Action Recognition, in ICCSNT 2021. [pdf]
Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning, in ICDM 2020. [pdf] [code]
Contrastive Multi-View Representation Learning on Graphs, in ICML 2020. [pdf] [code]
Graph Contrastive Learning with Augmentations, in NeurIPS 2020. [pdf]
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流 程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文 件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速 完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。