anomaly-detection-resources

anomaly-detection-resources

异常检测领域的综合学习资源库

本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。

异常检测机器学习数据挖掘PyODADBenchGithub开源项目

Anomaly Detection Learning Resources

.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars

.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks

.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License

.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome

.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark


Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>_ (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify outlying objects that are deviant from the general data distribution. Outlier detection has been proven critical in many fields, such as credit card fraud analytics, network intrusion detection, and mechanical unit defect detection.

This repository collects:

#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals

More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!

BTW, you may find my [GitHub] <https://github.com/yzhao062>_ and [outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>_ useful, especially PyOD library <https://github.com/yzhao062/pyod>_ and ADBench benchmark <https://github.com/Minqi824/ADBench>_.


Table of Contents

  • 1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>_

    • 1.1. Books <#11-books>_
    • 1.2. Tutorials <#12-tutorials>_
    • 1.3. Benchmarks <#13-benchmarks>_
  • 2. Courses/Seminars/Videos <#2-coursesseminarsvideos>_

  • 3. Toolbox & Datasets <#3-toolbox--datasets>_

    • 3.1. Multivariate data outlier detection <#31-multivariate-data>_
    • 3.2. Time series outlier detection <#32-time-series-outlier-detection>_
    • 3.3. Graph Outlier Detection <#33-graph-outlier-detection>_
    • 3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>_
    • 3.5. Datasets <#35-datasets>_
  • 4. Papers <#4-papers>_

    • 4.1. Overview & Survey Papers <#41-overview--survey-papers>_
    • 4.2. Key Algorithms <#42-key-algorithms>_
    • 4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>_
    • 4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>_
    • 4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>_
    • 4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>_
    • 4.7. Outlier Ensembles <#47-outlier-ensembles>_
    • 4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>_
    • 4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>_
    • 4.10. Interpretability <#410-interpretability>_
    • 4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>_
    • 4.12. Active Anomaly Detection <#412-active-anomaly-detection>_
    • 4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>_
    • 4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>_
    • 4.15. Outlier Detection Applications <#415-outlier-detection-applications>_
    • 4.16. Automated Outlier Detection <#416-automated-outlier-detection>_
    • 4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>_
    • 4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>_
    • 4.19. Isolation-based Methods <#419-isolation-based-methods>_
    • 4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>_
  • 5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>_

    • 5.1. Conferences & Workshops <#51-conferences--workshops>_
    • 5.2. Journals <#52-journals>_

  1. Books & Tutorials & Benchmarks

1.1. Books ^^^^^^^^^^

Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>_ by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques. A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>_

Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>_ by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.

Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>_ by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>_

1.2. Tutorials ^^^^^^^^^^^^^^

===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Tutorial Title Venue Year Ref Materials ===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>_ Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>_ Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>_ Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>_ Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>_ Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66> Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>_ Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>_ Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be> Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>_ ===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================

1.3. Benchmarks ^^^^^^^^^^^^^^^

News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>. The fully open-sourced ADBench <https://github.com/Minqi824/ADBench> compares 30 anomaly detection algorithms on 55 benchmark datasets.

============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Data Types Paper Title Venue Year Ref Materials ============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>, [Code] <https://github.com/datamllab/tods/tree/benchmark> Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark> Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>, [Code] <https://github.com/squareRoot3/GADBench> Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>, [Code] <https://github.com/Minqi824/ADBench> Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>, [Code] <https://github.com/Minqi824/ADGym> ============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================


  1. Courses/Seminars/Videos

Coursera Introduction to Anomaly Detection (by IBM)\ : [See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>_

Get started with the Anomaly Detection API (by IBM)\ : [See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>_

Practical Anomaly Detection by appliedAI Institute: [See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>_

Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ : [See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>_

Coursera Machine Learning by Andrew Ng also partly covers the topic\ :

  • Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>_
  • Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>_

Udemy Outlier Detection Algorithms in Data Mining and Data Science\ : [See Video] <https://www.udemy.com/outlier-detection-techniques/>_

Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ : [See Video] <http://web.stanford.edu/class/cs259d/>_


  1. Toolbox & Datasets

3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^

[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.

[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>_: A general GPU-accelerated framework for outlier detection.

[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.

[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.

[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.

[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.

[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>_\ : ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.

[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.

[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.

[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>_\ : A collection of some tests commonly used for identifying outliers in R.

[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>_\ : A collection of popular outlier detection algorithms in Matlab.

3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[Python] TODS <https://github.com/datamllab/tods>_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.

[Python] skyline <https://github.com/earthgecko/skyline>_\ : Skyline is a near real time anomaly detection system.

[Python] banpei <https://github.com/tsurubee/banpei>_\ : Banpei is a Python package of the anomaly detection.

[Python] telemanom <https://github.com/khundman/telemanom>_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.

[Python] `DeepADoTS

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多