.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars
.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks
.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License
.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome
.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark
Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>_
(also known as Anomaly Detection) is an exciting yet challenging field,
which aims to identify outlying objects that are deviant from the general data distribution.
Outlier detection has been proven critical in many fields, such as credit card
fraud analytics, network intrusion detection, and mechanical unit defect detection.
This repository collects:
#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals
More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!
BTW, you may find my [GitHub] <https://github.com/yzhao062>_ and
[outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>_ useful,
especially PyOD library <https://github.com/yzhao062/pyod>_ and ADBench benchmark <https://github.com/Minqi824/ADBench>_.
1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>_
1.1. Books <#11-books>_1.2. Tutorials <#12-tutorials>_1.3. Benchmarks <#13-benchmarks>_2. Courses/Seminars/Videos <#2-coursesseminarsvideos>_
3. Toolbox & Datasets <#3-toolbox--datasets>_
3.1. Multivariate data outlier detection <#31-multivariate-data>_3.2. Time series outlier detection <#32-time-series-outlier-detection>_3.3. Graph Outlier Detection <#33-graph-outlier-detection>_3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>_3.5. Datasets <#35-datasets>_4. Papers <#4-papers>_
4.1. Overview & Survey Papers <#41-overview--survey-papers>_4.2. Key Algorithms <#42-key-algorithms>_4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>_4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>_4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>_4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>_4.7. Outlier Ensembles <#47-outlier-ensembles>_4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>_4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>_4.10. Interpretability <#410-interpretability>_4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>_4.12. Active Anomaly Detection <#412-active-anomaly-detection>_4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>_4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>_4.15. Outlier Detection Applications <#415-outlier-detection-applications>_4.16. Automated Outlier Detection <#416-automated-outlier-detection>_4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>_4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>_4.19. Isolation-based Methods <#419-isolation-based-methods>_4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>_5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>_
5.1. Conferences & Workshops <#51-conferences--workshops>_5.2. Journals <#52-journals>_1.1. Books ^^^^^^^^^^
Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>_
by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques.
A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>_
Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>_
by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.
Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>_
by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>_
1.2. Tutorials ^^^^^^^^^^^^^^
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Tutorial Title Venue Year Ref Materials
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>_
Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>_
Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>_
Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>_
Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>_
Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66>
Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>_
Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>_
Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be>
Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>_
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
1.3. Benchmarks ^^^^^^^^^^^^^^^
News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>.
The fully open-sourced ADBench <https://github.com/Minqi824/ADBench> compares 30 anomaly detection algorithms on 55 benchmark datasets.
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Data Types Paper Title Venue Year Ref Materials
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>, [Code] <https://github.com/datamllab/tods/tree/benchmark>
Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark>
Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>, [Code] <https://github.com/squareRoot3/GADBench>
Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>, [Code] <https://github.com/Minqi824/ADBench>
Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>, [Code] <https://github.com/Minqi824/ADGym>
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Coursera Introduction to Anomaly Detection (by IBM)\ :
[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>_
Get started with the Anomaly Detection API (by IBM)\ :
[See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>_
Practical Anomaly Detection by appliedAI Institute:
[See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>_
Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ :
[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>_
Coursera Machine Learning by Andrew Ng also partly covers the topic\ :
Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>_Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>_Udemy Outlier Detection Algorithms in Data Mining and Data Science\ :
[See Video] <https://www.udemy.com/outlier-detection-techniques/>_
Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ :
[See Video] <http://web.stanford.edu/class/cs259d/>_
3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^
[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>_: A general GPU-accelerated framework for outlier detection.
[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.
[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.
[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.
[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>_\ :
ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.
[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>_\ : A collection of some tests commonly used for identifying outliers in R.
[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>_\ : A collection of popular outlier detection algorithms in Matlab.
3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[Python] TODS <https://github.com/datamllab/tods>_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.
[Python] skyline <https://github.com/earthgecko/skyline>_\ : Skyline is a near real time anomaly detection system.
[Python] banpei <https://github.com/tsurubee/banpei>_\ : Banpei is a Python package of the anomaly detection.
[Python] telemanom <https://github.com/khundman/telemanom>_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
[Python] `DeepADoTS


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。