anomaly-detection-resources

anomaly-detection-resources

异常检测领域的综合学习资源库

本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。

异常检测机器学习数据挖掘PyODADBenchGithub开源项目

Anomaly Detection Learning Resources

.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars

.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks

.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License

.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome

.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark


Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>_ (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify outlying objects that are deviant from the general data distribution. Outlier detection has been proven critical in many fields, such as credit card fraud analytics, network intrusion detection, and mechanical unit defect detection.

This repository collects:

#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals

More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!

BTW, you may find my [GitHub] <https://github.com/yzhao062>_ and [outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>_ useful, especially PyOD library <https://github.com/yzhao062/pyod>_ and ADBench benchmark <https://github.com/Minqi824/ADBench>_.


Table of Contents

  • 1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>_

    • 1.1. Books <#11-books>_
    • 1.2. Tutorials <#12-tutorials>_
    • 1.3. Benchmarks <#13-benchmarks>_
  • 2. Courses/Seminars/Videos <#2-coursesseminarsvideos>_

  • 3. Toolbox & Datasets <#3-toolbox--datasets>_

    • 3.1. Multivariate data outlier detection <#31-multivariate-data>_
    • 3.2. Time series outlier detection <#32-time-series-outlier-detection>_
    • 3.3. Graph Outlier Detection <#33-graph-outlier-detection>_
    • 3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>_
    • 3.5. Datasets <#35-datasets>_
  • 4. Papers <#4-papers>_

    • 4.1. Overview & Survey Papers <#41-overview--survey-papers>_
    • 4.2. Key Algorithms <#42-key-algorithms>_
    • 4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>_
    • 4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>_
    • 4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>_
    • 4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>_
    • 4.7. Outlier Ensembles <#47-outlier-ensembles>_
    • 4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>_
    • 4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>_
    • 4.10. Interpretability <#410-interpretability>_
    • 4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>_
    • 4.12. Active Anomaly Detection <#412-active-anomaly-detection>_
    • 4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>_
    • 4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>_
    • 4.15. Outlier Detection Applications <#415-outlier-detection-applications>_
    • 4.16. Automated Outlier Detection <#416-automated-outlier-detection>_
    • 4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>_
    • 4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>_
    • 4.19. Isolation-based Methods <#419-isolation-based-methods>_
    • 4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>_
  • 5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>_

    • 5.1. Conferences & Workshops <#51-conferences--workshops>_
    • 5.2. Journals <#52-journals>_

  1. Books & Tutorials & Benchmarks

1.1. Books ^^^^^^^^^^

Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>_ by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques. A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>_

Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>_ by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.

Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>_ by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>_

1.2. Tutorials ^^^^^^^^^^^^^^

===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Tutorial Title Venue Year Ref Materials ===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>_ Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>_ Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>_ Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>_ Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>_ Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66> Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>_ Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>_ Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be> Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>_ ===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================

1.3. Benchmarks ^^^^^^^^^^^^^^^

News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>. The fully open-sourced ADBench <https://github.com/Minqi824/ADBench> compares 30 anomaly detection algorithms on 55 benchmark datasets.

============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Data Types Paper Title Venue Year Ref Materials ============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>, [Code] <https://github.com/datamllab/tods/tree/benchmark> Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark> Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>, [Code] <https://github.com/squareRoot3/GADBench> Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>, [Code] <https://github.com/Minqi824/ADBench> Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>, [Code] <https://github.com/Minqi824/ADGym> ============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================


  1. Courses/Seminars/Videos

Coursera Introduction to Anomaly Detection (by IBM)\ : [See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>_

Get started with the Anomaly Detection API (by IBM)\ : [See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>_

Practical Anomaly Detection by appliedAI Institute: [See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>_

Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ : [See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>_

Coursera Machine Learning by Andrew Ng also partly covers the topic\ :

  • Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>_
  • Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>_

Udemy Outlier Detection Algorithms in Data Mining and Data Science\ : [See Video] <https://www.udemy.com/outlier-detection-techniques/>_

Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ : [See Video] <http://web.stanford.edu/class/cs259d/>_


  1. Toolbox & Datasets

3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^

[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.

[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>_: A general GPU-accelerated framework for outlier detection.

[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.

[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.

[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.

[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.

[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>_\ : ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.

[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.

[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.

[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>_\ : A collection of some tests commonly used for identifying outliers in R.

[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>_\ : A collection of popular outlier detection algorithms in Matlab.

3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[Python] TODS <https://github.com/datamllab/tods>_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.

[Python] skyline <https://github.com/earthgecko/skyline>_\ : Skyline is a near real time anomaly detection system.

[Python] banpei <https://github.com/tsurubee/banpei>_\ : Banpei is a Python package of the anomaly detection.

[Python] telemanom <https://github.com/khundman/telemanom>_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.

[Python] `DeepADoTS

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多