.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars
.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks
.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License
.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome
.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark
Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>_
(also known as Anomaly Detection) is an exciting yet challenging field,
which aims to identify outlying objects that are deviant from the general data distribution.
Outlier detection has been proven critical in many fields, such as credit card
fraud analytics, network intrusion detection, and mechanical unit defect detection.
This repository collects:
#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals
More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!
BTW, you may find my [GitHub] <https://github.com/yzhao062>_ and
[outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>_ useful,
especially PyOD library <https://github.com/yzhao062/pyod>_ and ADBench benchmark <https://github.com/Minqi824/ADBench>_.
1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>_
1.1. Books <#11-books>_1.2. Tutorials <#12-tutorials>_1.3. Benchmarks <#13-benchmarks>_2. Courses/Seminars/Videos <#2-coursesseminarsvideos>_
3. Toolbox & Datasets <#3-toolbox--datasets>_
3.1. Multivariate data outlier detection <#31-multivariate-data>_3.2. Time series outlier detection <#32-time-series-outlier-detection>_3.3. Graph Outlier Detection <#33-graph-outlier-detection>_3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>_3.5. Datasets <#35-datasets>_4. Papers <#4-papers>_
4.1. Overview & Survey Papers <#41-overview--survey-papers>_4.2. Key Algorithms <#42-key-algorithms>_4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>_4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>_4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>_4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>_4.7. Outlier Ensembles <#47-outlier-ensembles>_4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>_4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>_4.10. Interpretability <#410-interpretability>_4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>_4.12. Active Anomaly Detection <#412-active-anomaly-detection>_4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>_4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>_4.15. Outlier Detection Applications <#415-outlier-detection-applications>_4.16. Automated Outlier Detection <#416-automated-outlier-detection>_4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>_4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>_4.19. Isolation-based Methods <#419-isolation-based-methods>_4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>_5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>_
5.1. Conferences & Workshops <#51-conferences--workshops>_5.2. Journals <#52-journals>_1.1. Books ^^^^^^^^^^
Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>_
by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques.
A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>_
Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>_
by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.
Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>_
by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>_
1.2. Tutorials ^^^^^^^^^^^^^^
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Tutorial Title Venue Year Ref Materials
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>_
Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>_
Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>_
Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>_
Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>_
Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66>
Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>_
Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>_
Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be>
Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>_
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
1.3. Benchmarks ^^^^^^^^^^^^^^^
News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>.
The fully open-sourced ADBench <https://github.com/Minqi824/ADBench> compares 30 anomaly detection algorithms on 55 benchmark datasets.
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Data Types Paper Title Venue Year Ref Materials
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>, [Code] <https://github.com/datamllab/tods/tree/benchmark>
Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark>
Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>, [Code] <https://github.com/squareRoot3/GADBench>
Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>, [Code] <https://github.com/Minqi824/ADBench>
Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>, [Code] <https://github.com/Minqi824/ADGym>
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Coursera Introduction to Anomaly Detection (by IBM)\ :
[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>_
Get started with the Anomaly Detection API (by IBM)\ :
[See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>_
Practical Anomaly Detection by appliedAI Institute:
[See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>_
Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ :
[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>_
Coursera Machine Learning by Andrew Ng also partly covers the topic\ :
Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>_Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>_Udemy Outlier Detection Algorithms in Data Mining and Data Science\ :
[See Video] <https://www.udemy.com/outlier-detection-techniques/>_
Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ :
[See Video] <http://web.stanford.edu/class/cs259d/>_
3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^
[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>_: A general GPU-accelerated framework for outlier detection.
[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.
[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.
[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.
[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>_\ :
ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.
[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>_\ : A collection of some tests commonly used for identifying outliers in R.
[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>_\ : A collection of popular outlier detection algorithms in Matlab.
3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[Python] TODS <https://github.com/datamllab/tods>_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.
[Python] skyline <https://github.com/earthgecko/skyline>_\ : Skyline is a near real time anomaly detection system.
[Python] banpei <https://github.com/tsurubee/banpei>_\ : Banpei is a Python package of the anomaly detection.
[Python] telemanom <https://github.com/khundman/telemanom>_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
[Python] `DeepADoTS


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作