MambaOut

MambaOut

高效视觉模型展示简洁架构卓越性能

MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。

MambaOut计算机视觉图像分类神经网络深度学习Github开源项目

MambaOut: 我们真的需要用Mamba来处理视觉任务吗?

<p align="center"> <a href="https://arxiv.org/abs/2405.07992" alt="arXiv"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/c18fbb44-cef2-475e-a55f-f1a95040411c.svg?style=flat" /></a> <a href="https://huggingface.co/spaces/whyu/MambaOut" alt="Hugging Face Spaces"> <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue" /></a> <a href="https://colab.research.google.com/drive/1DTJRsPczV0pOwmFhEjSWyI2NqQoR_u-K?usp=sharing" alt="Colab"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/94ec969a-36ae-471b-9e6d-97f5c9cfa5ee.svg" /></a> </p> <p align="center"><em>纪念科比·布莱恩特</em></p>

"我还能说什么呢,曼巴精神永存。" — 科比·布莱恩特,NBA告别演讲,2016年

<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/f015b212-3303-457e-abd3-3044884072a4.png" width="400"> <br> <small>图片来源:https://www.ebay.ca/itm/264973452480</small> </p>

这是我们论文"MambaOut: 我们真的需要用Mamba来处理视觉任务吗?"中提出的MambaOut的PyTorch实现。

更新

  • 2024年5月20日:根据Issue #5的建议,我们发布了具有24个门控CNN块的MambaOut-Kobe模型版本,在ImageNet上达到了80.0%的准确率。MambaOut-Kobe以仅41%的参数量和33%的FLOPs超越了ViT-S 0.2%的准确率。详见模型

  • 2024年5月18日:添加了一个教程,讲解如何计算Transformer的FLOPs(论文中的公式6)。


MambaOut第一张图 图1:(a) 门控CNN和Mamba块的架构(省略了归一化和短路连接)。Mamba块通过增加一个额外的状态空间模型(SSM)来扩展门控CNN。正如第3节将从概念上讨论的那样,SSM对于ImageNet上的图像分类并不是必需的。为了实证验证这一说法,我们堆叠门控CNN块来构建一系列名为MambaOut的模型。(b) 在ImageNet图像分类任务上,MambaOut优于视觉Mamba模型,如Vision Mamba、VMamba和PlainMamba。

<br>

MambaOut第二张图 图2:从记忆角度说明因果注意力和RNN类模型的机制,其中$x_i$表示第$i$步的输入标记。(a) 因果注意力将所有先前标记的键$k$和值$v$存储为记忆。通过不断添加当前标记的键和值来更新记忆,因此记忆是无损的,但缺点是整合旧记忆和当前标记的计算复杂度随着序列长度的增加而增加。因此,注意力可以有效地处理短序列,但可能在处理较长序列时遇到困难。(b) 相比之下,RNN类模型将先前的标记压缩为固定大小的隐藏状态$h$,作为记忆。这种固定大小意味着RNN记忆本质上是有损的,无法直接与注意力模型的无损记忆容量竞争。尽管如此,RNN类模型在处理长序列时可以显示出明显的优势,因为合并旧记忆与当前输入的复杂度保持恒定,不受序列长度的影响。

<br>

MambaOut第三张图 图3:(a) 标记混合的两种模式。对于总共$T$个标记,全可见模式允许标记$t$从所有标记中聚合输入,即$ \left{ x_i \right}{i=1}^{T} $,来计算其输出$y_t$。相比之下,因果模式将标记$t$限制为只能从前面和当前的标记$ \left{ x_i \right}{i=1}^{t} $中聚合输入。默认情况下,注意力在全可见模式下运行,但可以通过因果注意力掩码调整为因果模式。RNN类模型,如Mamba的SSM,由于其循环特性,本质上在因果模式下运行。(b) 我们将ViT的注意力从全可见模式修改为因果模式,并观察到在ImageNet上的性能下降,这表明因果混合对于理解任务是不必要的。

要求

PyTorch和timm 0.6.11(pip install timm==0.6.11)。

数据准备:ImageNet的文件夹结构如下,你可以使用这个脚本提取ImageNet。

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

模型

在ImageNet上训练的MambaOut模型

模型分辨率参数量MACsTop1准确率日志
mambaout_femto2247.3M1.2G78.9日志
mambaout_kobe*2249.1M1.5G80.0日志
mambaout_tiny22426.5M4.5G82.7日志
mambaout_small22448.5M9.0G84.1日志
mambaout_base22484.8M15.8G84.2日志

* 科比纪念版,包含24个门控CNN块。

使用方法

我们还提供了一个Colab笔记本,其中包含使用MambaOut进行推理的步骤:Colab

Gradio演示

网页演示可在Hugging Face Spaces查看。您也可以轻松在本地运行Gradio演示。除了PyTorch和timm==0.6.11外,请通过pip install gradio安装Gradio,然后运行

python gradio_demo/app.py

验证

要评估模型,请运行:

MODEL=mambaout_tiny python3 validate.py /path/to/imagenet --model $MODEL -b 128 \ --pretrained

训练

我们默认使用4096的批量大小,这里我们展示如何使用8个GPU进行训练。对于多节点训练,请根据您的情况调整--grad-accum-steps

DATA_PATH=/path/to/imagenet CODE_PATH=/path/to/code/MambaOut # 在此修改代码路径 ALL_BATCH_SIZE=4096 NUM_GPU=8 GRAD_ACCUM_STEPS=4 # 根据您的GPU数量和内存大小进行调整 let BATCH_SIZE=ALL_BATCH_SIZE/NUM_GPU/GRAD_ACCUM_STEPS MODEL=mambaout_tiny DROP_PATH=0.2 cd $CODE_PATH && sh distributed_train.sh $NUM_GPU $DATA_PATH \ --model $MODEL --opt adamw --lr 4e-3 --warmup-epochs 20 \ -b $BATCH_SIZE --grad-accum-steps $GRAD_ACCUM_STEPS \ --drop-path $DROP_PATH # --native-amp # 也可以使用 --native-amp 或 --amp 来加速训练

其他模型的训练脚本可在scripts中找到。

Transformer FLOPs计算教程

这个教程展示了如何计算Transformer的FLOPs(论文中的公式6)。欢迎反馈,我会持续改进它。

引用

@article{yu2024mambaout,
  title={MambaOut: Do We Really Need Mamba for Vision?},
  author={Yu, Weihao and Wang, Xinchao},
  journal={arXiv preprint arXiv:2405.07992},
  year={2024}
}

致谢

Weihao得到了Snap研究奖学金、Google TPU研究云(TRC)和Google云研究信用计划的部分支持。我们感谢Dongze Lian、Qiuhong Shen、Xingyi Yang和Gongfan Fang的宝贵讨论。

我们的实现基于pytorch-image-modelspoolformerConvNeXtmetaformerinceptionnext

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多