Awesome-Transformer-in-Medical-Imaging

Awesome-Transformer-in-Medical-Imaging

Transformer在医学图像分析中的应用进展综述

本项目整理了Transformer模型在医学图像分析中的最新研究进展。内容涵盖图像分类、分割、重建、合成等多个领域,系统地归纳和分类了相关论文。项目提供了医学图像分析中Transformer应用的分类体系,详细的参考文献,以及开源代码库链接,为研究人员提供了全面的学习和实践资源。

Vision Transformer医学图像分析图像分割图像分类深度学习Github开源项目

Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review

Awesome License: MIT

:fire::fire:This is a collection of awesome articles about Transformer models in medical imaging :fire::fire:

:loudspeaker: Our review paper published on MedIA: Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review :heart:

:loudspeaker: Our review paper published on arXiv: Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review :heart:

Citation

@article{azad2023advances,
  title={Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review},
  author={Azad, Reza and Kazerouni, Amirhossein and Heidari, Moein and Aghdam, Ehsan Khodapanah and Molaei, Amirali and Jia, Yiwei and Jose, Abin and Roy, Rijo and Merhof, Dorit},
  journal={Medical Image Analysis},
  volume = {91},
  pages={103000},
  year={2024},
  issn = {1361-8415},
  publisher={Elsevier}
}

Contents

Taxonomy

Transformers

Papers

Image Classification

HATNet: An End-to-End Holistic Attention Network for Diagnosis of Breast Biopsy Images <br> Sachin Mehta, Ximing Lu, Donald Weaver, Joann G. Elmore, Hannaneh Hajishirzi, Linda Shapiro<br> [25th Jul, 2020] [MedIA Journal, 2022]
[PDF] [GitHub]

A graph-transformer for whole slide image classification <br> Yi Zheng, Rushin H. Gindra, Emily J. Green, Eric J. Burks, Margrit Betke, Jennifer E. Beane, Vijaya B. Kolachalama<br> [19th May, 2022] [TMI Journal, 2022]
[PDF] [GitHub]

RadioTransformer: A Cascaded Global-Focal Transformer for Visual Attention-guided Disease Classification <br> Moinak Bhattacharya, Shubham Jain, Prateek Prasanna<br> [23rd Feb., 2022] [ECCV, 2022]
[PDF]

Federated Split Vision Transformer for COVID-19 CXR Diagnosis using Task-Agnostic Training <br> Sangjoon Park, Gwanghyun Kim, Jeongsol Kim, Boah Kim, Jong Chul Ye<br> [2nd Nov., 2021] [NeurIPS, 2021]
[PDF]

Vision transformer for classification of breast ultrasound images <br> Behnaz Gheflati, Hassan Rivaz<br> [27th Oct., 2021] [EMBC, 2022]
[PDF]

MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classification <br> Shuang Yu, Kai Ma, Qi Bi, Cheng Bian, Munan Ning, Nanjun He, Yuexiang Li, Hanruo Liu, Yefeng Zheng<br> [21st Sep., 2021] [MICCAI, 2021]
[PDF] [GitHub]

3DMeT: 3D Medical Image Transformer for Knee Cartilage Defect Assessment <br> Sheng Wang, Zixu Zhuang, Kai Xuan, Dahong Qian, Zhong Xue, Jia Xu, Ying Liu, Yiming Chai, Lichi Zhang, Qian Wang, Dinggang Shen<br> [21st Sep., 2021] [MICCAI Workshop, 2021]
[PDF]

COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare <br> Debaditya Shome, T. Kar, Sachi Nandan Mohanty, Prayag Tiwari, Khan Muhammad, Abdullah AlTameem, Yazhou Zhang, Abdul Khader Jilani Saudagar<br> [23rd Sep., 2021] [International Journal of Environmental Research and Public Health, 2021]
[PDF] [GitHub]

Is it Time to Replace CNNs with Transformers for Medical Images? <br> Christos Matsoukas, Johan Fredin Haslum, Magnus Söderberg, Kevin Smith<br> [20th Aug., 2021] [ICCV Workshop, 2021]
[PDF] [GitHub]

Vision Transformer for femur fracture classification <br> Leonardo Tanzi, Andrea Audisio, Giansalvo Cirrincione, Alessandro Aprato, Enrico Vezzetti<br> [7th Aug., 2021] [Injury Journal, 2022]
[PDF]

xViTCOS: Explainable Vision Transformer Based COVID-19 Screening Using Radiography <br> Arnab Kumar Mondal, Arnab Bhattacharjee, Parag Singla, A. P. Prathosh<br> [7th Jul., 2021] [IEEE Journal of Translational Engineering in Health and Medicine, 2021]
[PDF] [Github]

COVID-VIT: Classification of COVID-19 from CT chest images based on vision transformer models <br> Xiaohong Gao, Yu Qian, Alice Gao<br> [4th Jul., 2021] [NextComp, 2022]
[PDF] [GitHub]

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification <br> Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, Yongbing Zhang<br> [2nd Jun., 2021] [NeurIPS, 2021]
[PDF] [GitHub]

Lesion-Aware Transformers for Diabetic Retinopathy Grading <br> Rui Sun, Yihao Li, Tianzhu Zhang, Zhendong Mao, Feng Wu, Yongdong Zhang<br> [1st Jun., 2021] [CVPR, 2021]
[PDF]

POCFormer: A Lightweight Transformer Architecture for Detection of COVID-19 Using Point of Care Ultrasound <br> Shehan Perera, Srikar Adhikari, Alper Yilmaz<br> [20th May, 2021] [ICIP, 2022]
[PDF]

Automatic diagnosis of covid-19 using a tailored transformer-like network <br> Chengeng Liu, Qingshan Yin<br> [21st Apr., 2021] [CISAT, 2021]
[PDF]

Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature Corpus <br> Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye<br> [12th Mar., 2021] [arXiv, 2021]
[PDF]

TransMed: Transformers Advance Multi-modal Medical Image Classification <br> Yin Dai, Yifan Gao<br> [10th Mar., 2021] [Diagnostics, 2021]
[PDF]


Image Segmentation

TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation <br> Reza Azad, Moein Heidari, Moein Shariatnia, Ehsan Khodapanah Aghdam, Sanaz Karimijafarbigloo, Ehsan Adeli, Dorit Merhof<br> [1st Aug., 2022] [MICCAI Workshop, 2022]
[PDF] [GitHub]

HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation<br> Moein Heidari, Amirhossein Kazerouni, Milad Soltany, Reza Azad, Ehsan Khodapanah, Aghdam Julien Cohen-Adad, Dorit Merhof<br> [18th Jul., 2022] [WACV, 2023]
[PDF] [GitHub]

Self Pre-training with Masked Autoencoders for Medical Image Analysis<br> Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, Prateek Prasanna<br> [10th Mar., 2022] [arXiv, 2022]
[PDF]

Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images<br> Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger Roth, Daguang Xu <br> [4th Jan., 2022] [MICCAI Workshop]
[PDF] [GitHub]

Semi-Supervised Medical Image Segmentation via Cross Teaching between CNN and Transformer<br> Xiangde Luo, Minhao Hu, Tao Song, Guotai Wang, Shaoting Zhang<br> [9th Dec., 2021] [MIDL, 2022]
[PDF] [Github]

T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging<br> Dong Yang, Andriy Myronenko, Xiaosong Wang, Ziyue Xu, Holger R. Roth, Daguang Xu<br> [15th Nov., 2021] [ICCV, 2021]
[PDF]

MISSFormer: An Effective Medical Image Segmentation Transformer<br> Xiaohong Huang, Zhifang Deng, Dandan Li, Xueguang Yuan<br> [15th Sep., 2021] [TMI Journal, 2022]
[PDF] [GitHub]

nnFormer: Interleaved Transformer for Volumetric Segmentation<br> Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, Yizhou Yu<br> [7th Sep., 2021] [arXiv, 2021]
[PDF] [GitHub]

Medical Image Segmentation Using Squeeze-and-Expansion Transformers<br> Shaohua Li, Xiuchao Sui, Xiangde Luo, Xinxing Xu, Yong Liu, Rick Goh<br> [20th May, 2021] [IJCAI, 2021]
[PDF] [GitHub]

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation<br> Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, Manning Wang <br> [12th May, 2021] [arXiv, 2021]
[PDF] [GitHub]

UNETR: Transformers for 3D Medical Image Segmentation<br> Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger Roth, Daguang Xu<br> [18th Mar., 2021] [WACV, 2022]
[PDF] [GitHub]

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer<br> Jiangyun Li, Wenxuan Wang, Chen Chen, Tianxiang Zhang, Sen Zha, Hong Yu, Jing Wang<br> [7th Mar, 2021] [MICCAI, 2021]
[PDF] [GitHub]

CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation <br> Yutong Xie, Jianpeng Zhang, Chunhua Shen, Yong Xia <br> [4th Mar., 2021] [MICCAI, 2021]
[PDF] [GitHub]

Medical Transformer: Gated Axial-Attention for Medical Image Segmentation<br> Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, Vishal M. Patel<br> [21th Feb., 2021] [MICCAI, 2021]
[PDF] [GitHub]

TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation<br> *Yundong Zhang, Huiye Liu, Qiang

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多