Awesome Foundational Models in Medical Imaging
:fire:</p>🔥🔥 This is a collection of awesome articles about foundation models in medical imaging🔥🔥
Our survey paper on arXiv: Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision ❤️
If you find our work useful in your research, please consider citing:
@article{azad2023foundational, title={Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision}, author={Azad, Bobby and Azad, Reza and Eskandari, Sania and Bozorgpour, Afshin and Kazerouni, Amirhossein and Rekik, Islem and Merhof, Dorit}, journal={arXiv preprint arXiv:2310.18689}, year={2023} }
Foundation models, large-scale pre-trained deep learning models adaptable to various tasks, have gained interest across deep learning applications. In the medical imaging field, they enable contextual reasoning, generalization, and prompt-based task adjustments. This survey provides an overview of foundation models in medical imaging, covering fundamental concepts, taxonomy based on training strategies, application domains, imaging modalities, and more. It highlights practical use cases, applications, future directions, and challenges, including interpretability, data management, computational needs, and contextual comprehension.
<p align="center"> <img src="https://github.com/xmindflow/Awesome-Foundation-Models-in-Medical-Imaging/assets/61879630/7a5fa0c3-b92a-4951-92cc-746e6766aa00" alt="Image Description"> </p>We strongly encourage authors of relevant works to make a pull request and add their paper's information.
Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision🔥<br> Bobby Azad, Reza Azad, Sania Eskandari, Afshin Bozorgpour, Amirhossein Kazerouni, Islem Rekik, Dorit Merhof<br> [28th Oct., 2023] [arXiv, 2023]<br> [Paper]<br>
Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning<br> Weijian Huang, Cheng Li, Hao Yang, Jiarun Liu, Shanshan Wang<br> [12th Sep., 2023] [arXiv, 2023]<br> [Paper]<br>
A visual-language foundation model for pathology image analysis using medical Twitter<br> Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J. Montine, James Zou<br> [17th Aug., 2023] [Nature Medicine, 2023]<br> [Paper] [GitHub]<br>
ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders<br> Shawn Xu, Lin Yang, Christopher Kelly, Marcin Sieniek, Timo Kohlberger, Martin Ma, Wei-Hung Weng, Atilla Kiraly, Sahar Kazemzadeh, Zakkai Melamed, Jungyeon Park, Patricia Strachan, Yun Liu, Chuck Lau, Preeti Singh, Christina Chen, Mozziyar Etemadi, Sreenivasa Raju Kalidindi, Yossi Matias, Katherine Chou, Greg S. Corrado, Shravya Shetty, Daniel Tse, Shruthi Prabhakara, Daniel Golden, Rory Pilgrim, Krish Eswaran, Andrew Sellergren<br> [2nd Aug., 2023] [arXiv, 2023]<br> [Paper]<br>
Knowledge Boosting: Rethinking Medical Contrastive Vision-Language Pre-Training<br> Xiaofei Chen, Yuting He, Cheng Xue, Rongjun Ge, Shuo Li, Guanyu Yang<br> [14th Jul., 2023] [MICCAI, 2023]<br> [Paper] [GitHub]<br>
Text-guided Foundation Model Adaptation for Pathological Image Classification<br> Yunkun Zhang, Jin Gao, Mu Zhou, Xiaosong Wang, Yu Qiao, Shaoting Zhang, Dequan Wang<br> [27th Jul., 2023] [MICCAI, 2023]<br> [Paper] [GitHub]<br>
Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images<br> Ming Y. Lu, Bowen Chen, Andrew Zhang, Drew F.K. Williamson, Richard J. Chen, Tong Ding, Long Phi Le, Yung-Sung Chuang, Faisal Mahmood<br> [13th Jun., 2023] [CVPR, 2023]<br> [Paper]<br>
Large-Scale Domain-Specific Pretraining for Biomedical Vision-Language Processing<br> Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Matthew P. Lungren, Tristan Naumann, Hoifung Poon<br> [2nd Mar., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts<br> Zhihong Chen, Shizhe Diao, Benyou Wang, Guanbin Li, Xiang Wan<br> [17th Feb., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
Learning to Exploit Temporal Structure for Biomedical Vision Language Processing<br> Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay<br> [11th Jan., 2023] [CVPR, 2023]<br> [Paper]<br>
CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection<br> Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, Zongwei Zhou<br> [2nd Jan., 2023] [ICCV, 2023]<br> [Paper] [GitHub]<br>
MedCLIP: Contrastive Learning from Unpaired Medical Images and Text<br> Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, Jimeng Sun<br> [18th Oct., 2022] [EMNLP, 2022]<br> [Paper] [GitHub]<br>
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning<br> Ekin Tiu, Ellie Talius, Pujan Patel, Curtis P. Langlotz, Andrew Y. Ng, Pranav Rajpurkar<br> [15th Sep., 2022] [Nature Biomedical Engineering, 2022]<br> [Paper]<br>
Radiology-Llama2: Best-in-Class Large Language Model for Radiology<br> Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Jie Luo, Cheng Chen, Sekeun Kim, Jiang Hu, Haixing Dai, Lin Zhao, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Tianming Liu, Quanzheng Li, Xiang Li<br> [29th Aug., 2023] [arXiv, 2023]<br> [Paper]<br>
ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation<br> Guangyu Wang, Guoxing Yang, Zongxin Du, Longjun Fan, Xiaohu Li<br> [16th Jun., 2023] [arXiv, 2023]<br> [Paper]<br>
XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models<br> Omkar Thawkar, Abdelrahman Shaker, Sahal Shaji Mullappilly, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Fahad Shahbaz Khan<br> [13th Jun., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day<br> Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, Jianfeng Gao<br> [1st Jun., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
PMC-LLaMA: Towards Building Open-source Language Models for Medicine<br> Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie<br> [27th Apr., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
Visual Med-Alpaca: A Parameter-Efficient Biomedical LLM with Visual Capabilities<br> Chang Shu, Baian Chen, Fangyu Liu, Zihao Fu, Ehsan Shareghi, Nigel Collier<br> [11th Apr., 2023] [GitHub, 2023]<br> [GitHub]<br>
ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge<br> Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, You Zhang<br> [24th Mar., 2023] [Cureus, 2023]<br> [Paper] [GitHub]<br>
DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4<br> Zhengliang Liu, Xiaowei Yu, Lu Zhang, Zihao Wu, Chao Cao, Haixing Dai, Lin Zhao, Wei Liu, Dinggang Shen, Quanzheng Li, Tianming Liu, Dajiang Zhu, Xiang Li<br> [20th Mar., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models<br> Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, Dinggang Shen<br> [14th Feb., 2023] [arXiv, 2023]<br> [Paper]<br>
Med-Flamingo: a Multimodal Medical Few-shot Learner<br> Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Cyril Zakka, Yash Dalmia, Eduardo Pontes Reis, Pranav Rajpurkar, Jure Leskovec<br> [27th Jul., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
Clinical-BERT: Vision-Language Pre-training for Radiograph Diagnosis and Reports Generation<br> none<br> [22nd Jun., 2022] [AAAI, 2022]<br> [Paper]<br>
Towards Expert-Level Medical Question Answering with Large Language Models<br> Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, Vivek Natarajan<br> [16th May., 2023] [arXiv, 2023]<br> [Paper]<br>
MedBLIP: Bootstrapping Language-Image Pre-training from 3D Medical Images and Texts<br> Qiuhui Chen, Xinyue Hu, Zirui Wang, Yi Hong<br> [18th May., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>
Vision-Language Model for Visual Question Answering in Medical Imagery<br> none<br> [22nd Feb., 2023] [Bioengineering, 2023]<br> [Paper]<br>
Virchow: A Million-Slide Digital Pathology Foundation Model<br> *Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE ),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手 ,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时 语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号