Awesome-Foundation-Models-in-Medical-Imaging

Awesome-Foundation-Models-in-Medical-Imaging

医学影像基础模型研究文献资源汇总

本项目汇总了医学影像领域基础模型相关的研究文献和资源。内容涵盖文本提示模型和视觉提示模型两大类,包括对比学习、对话式、生成式等多种模型。项目提供论文标题、作者、发表时间和链接等详细信息。这一资源集合为医学影像基础模型研究提供了全面的参考材料。

医学影像基础模型人工智能深度学习计算机视觉Github开源项目

<p align=center>:fire:Awesome Foundational Models in Medical Imaging :fire:</p>

Awesome License: MIT PRs Welcome

🔥🔥 This is a collection of awesome articles about foundation models in medical imaging🔥🔥

Our survey paper on arXiv: Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision ❤️

Citation

If you find our work useful in your research, please consider citing:

@article{azad2023foundational, title={Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision}, author={Azad, Bobby and Azad, Reza and Eskandari, Sania and Bozorgpour, Afshin and Kazerouni, Amirhossein and Rekik, Islem and Merhof, Dorit}, journal={arXiv preprint arXiv:2310.18689}, year={2023} }

Overview

Foundation models, large-scale pre-trained deep learning models adaptable to various tasks, have gained interest across deep learning applications. In the medical imaging field, they enable contextual reasoning, generalization, and prompt-based task adjustments. This survey provides an overview of foundation models in medical imaging, covering fundamental concepts, taxonomy based on training strategies, application domains, imaging modalities, and more. It highlights practical use cases, applications, future directions, and challenges, including interpretability, data management, computational needs, and contextual comprehension.

<p align="center"> <img src="https://github.com/xmindflow/Awesome-Foundation-Models-in-Medical-Imaging/assets/61879630/7a5fa0c3-b92a-4951-92cc-746e6766aa00" alt="Image Description"> </p>

We strongly encourage authors of relevant works to make a pull request and add their paper's information.

Contents

Survey Papers

Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision🔥<br> Bobby Azad, Reza Azad, Sania Eskandari, Afshin Bozorgpour, Amirhossein Kazerouni, Islem Rekik, Dorit Merhof<br> [28th Oct., 2023] [arXiv, 2023]<br> [Paper]<br>

Papers

Textual Prompted Models

Contrastive

Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning<br> Weijian Huang, Cheng Li, Hao Yang, Jiarun Liu, Shanshan Wang<br> [12th Sep., 2023] [arXiv, 2023]<br> [Paper]<br>

A visual-language foundation model for pathology image analysis using medical Twitter<br> Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J. Montine, James Zou<br> [17th Aug., 2023] [Nature Medicine, 2023]<br> [Paper] [GitHub]<br>

ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders<br> Shawn Xu, Lin Yang, Christopher Kelly, Marcin Sieniek, Timo Kohlberger, Martin Ma, Wei-Hung Weng, Atilla Kiraly, Sahar Kazemzadeh, Zakkai Melamed, Jungyeon Park, Patricia Strachan, Yun Liu, Chuck Lau, Preeti Singh, Christina Chen, Mozziyar Etemadi, Sreenivasa Raju Kalidindi, Yossi Matias, Katherine Chou, Greg S. Corrado, Shravya Shetty, Daniel Tse, Shruthi Prabhakara, Daniel Golden, Rory Pilgrim, Krish Eswaran, Andrew Sellergren<br> [2nd Aug., 2023] [arXiv, 2023]<br> [Paper]<br>

Knowledge Boosting: Rethinking Medical Contrastive Vision-Language Pre-Training<br> Xiaofei Chen, Yuting He, Cheng Xue, Rongjun Ge, Shuo Li, Guanyu Yang<br> [14th Jul., 2023] [MICCAI, 2023]<br> [Paper] [GitHub]<br>

Text-guided Foundation Model Adaptation for Pathological Image Classification<br> Yunkun Zhang, Jin Gao, Mu Zhou, Xiaosong Wang, Yu Qiao, Shaoting Zhang, Dequan Wang<br> [27th Jul., 2023] [MICCAI, 2023]<br> [Paper] [GitHub]<br>

Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images<br> Ming Y. Lu, Bowen Chen, Andrew Zhang, Drew F.K. Williamson, Richard J. Chen, Tong Ding, Long Phi Le, Yung-Sung Chuang, Faisal Mahmood<br> [13th Jun., 2023] [CVPR, 2023]<br> [Paper]<br>

Large-Scale Domain-Specific Pretraining for Biomedical Vision-Language Processing<br> Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Matthew P. Lungren, Tristan Naumann, Hoifung Poon<br> [2nd Mar., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts<br> Zhihong Chen, Shizhe Diao, Benyou Wang, Guanbin Li, Xiang Wan<br> [17th Feb., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

Learning to Exploit Temporal Structure for Biomedical Vision Language Processing<br> Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay<br> [11th Jan., 2023] [CVPR, 2023]<br> [Paper]<br>

CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection<br> Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, Zongwei Zhou<br> [2nd Jan., 2023] [ICCV, 2023]<br> [Paper] [GitHub]<br>

MedCLIP: Contrastive Learning from Unpaired Medical Images and Text<br> Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, Jimeng Sun<br> [18th Oct., 2022] [EMNLP, 2022]<br> [Paper] [GitHub]<br>

Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning<br> Ekin Tiu, Ellie Talius, Pujan Patel, Curtis P. Langlotz, Andrew Y. Ng, Pranav Rajpurkar<br> [15th Sep., 2022] [Nature Biomedical Engineering, 2022]<br> [Paper]<br>


Conversational

Radiology-Llama2: Best-in-Class Large Language Model for Radiology<br> Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Jie Luo, Cheng Chen, Sekeun Kim, Jiang Hu, Haixing Dai, Lin Zhao, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Tianming Liu, Quanzheng Li, Xiang Li<br> [29th Aug., 2023] [arXiv, 2023]<br> [Paper]<br>

ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation<br> Guangyu Wang, Guoxing Yang, Zongxin Du, Longjun Fan, Xiaohu Li<br> [16th Jun., 2023] [arXiv, 2023]<br> [Paper]<br>

XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models<br> Omkar Thawkar, Abdelrahman Shaker, Sahal Shaji Mullappilly, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Fahad Shahbaz Khan<br> [13th Jun., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day<br> Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, Jianfeng Gao<br> [1st Jun., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

PMC-LLaMA: Towards Building Open-source Language Models for Medicine<br> Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie<br> [27th Apr., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

Visual Med-Alpaca: A Parameter-Efficient Biomedical LLM with Visual Capabilities<br> Chang Shu, Baian Chen, Fangyu Liu, Zihao Fu, Ehsan Shareghi, Nigel Collier<br> [11th Apr., 2023] [GitHub, 2023]<br> [GitHub]<br>

ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge<br> Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, You Zhang<br> [24th Mar., 2023] [Cureus, 2023]<br> [Paper] [GitHub]<br>

DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4<br> Zhengliang Liu, Xiaowei Yu, Lu Zhang, Zihao Wu, Chao Cao, Haixing Dai, Lin Zhao, Wei Liu, Dinggang Shen, Quanzheng Li, Tianming Liu, Dajiang Zhu, Xiang Li<br> [20th Mar., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models<br> Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, Dinggang Shen<br> [14th Feb., 2023] [arXiv, 2023]<br> [Paper]<br>


Generative

Med-Flamingo: a Multimodal Medical Few-shot Learner<br> Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Cyril Zakka, Yash Dalmia, Eduardo Pontes Reis, Pranav Rajpurkar, Jure Leskovec<br> [27th Jul., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

Clinical-BERT: Vision-Language Pre-training for Radiograph Diagnosis and Reports Generation<br> none<br> [22nd Jun., 2022] [AAAI, 2022]<br> [Paper]<br>

Towards Expert-Level Medical Question Answering with Large Language Models<br> Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, Vivek Natarajan<br> [16th May., 2023] [arXiv, 2023]<br> [Paper]<br>


Hybrid

MedBLIP: Bootstrapping Language-Image Pre-training from 3D Medical Images and Texts<br> Qiuhui Chen, Xinyue Hu, Zirui Wang, Yi Hong<br> [18th May., 2023] [arXiv, 2023]<br> [Paper] [GitHub]<br>

Vision-Language Model for Visual Question Answering in Medical Imagery<br> none<br> [22nd Feb., 2023] [Bioengineering, 2023]<br> [Paper]<br>


Visual Prompted Models

Adaptations

Virchow: A Million-Slide Digital Pathology Foundation Model<br> *Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多