transformers.js

transformers.js

浏览器端运行先进机器学习模型的JavaScript库

Transformers.js是一个JavaScript库,可在浏览器中直接运行Hugging Face的Transformers模型,无需服务器。该库支持自然语言处理、计算机视觉、音频处理和多模态任务,使用ONNX Runtime执行模型。它的设计与Python版Transformers功能相同,提供简单API运行预训练模型,并支持将自定义模型转换为ONNX格式。

Transformers.js机器学习ONNX Runtime自然语言处理计算机视觉Github开源项目
<p align="center"> <br/> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://github.com/xenova/transformers.js/assets/26504141/bd047e0f-aca9-4ff7-ba07-c7ca55442bc4" width="500" style="max-width: 100%;"> <source media="(prefers-color-scheme: light)" srcset="https://github.com/xenova/transformers.js/assets/26504141/84a5dc78-f4ea-43f4-96f2-b8c791f30a8e" width="500" style="max-width: 100%;"> <img alt="transformers.js javascript library logo" src="https://github.com/xenova/transformers.js/assets/26504141/84a5dc78-f4ea-43f4-96f2-b8c791f30a8e" width="500" style="max-width: 100%;"> </picture> <br/> </p> <p align="center"> <a href="https://www.npmjs.com/package/@xenova/transformers"><img alt="NPM" src="https://img.shields.io/npm/v/@xenova/transformers"></a> <a href="https://www.npmjs.com/package/@xenova/transformers"><img alt="NPM Downloads" src="https://img.shields.io/npm/dw/@xenova/transformers"></a> <a href="https://www.jsdelivr.com/package/npm/@xenova/transformers"><img alt="jsDelivr Hits" src="https://img.shields.io/jsdelivr/npm/hw/@xenova/transformers"></a> <a href="https://github.com/xenova/transformers.js/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/xenova/transformers.js?color=blue"></a> <a href="https://huggingface.co/docs/transformers.js/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers.js/index.svg?down_color=red&down_message=offline&up_message=online"></a> </p>

State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!

Transformers.js is designed to be functionally equivalent to Hugging Face's transformers python library, meaning you can run the same pretrained models using a very similar API. These models support common tasks in different modalities, such as:

  • 📝 Natural Language Processing: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.
  • 🖼️ Computer Vision: image classification, object detection, and segmentation.
  • 🗣️ Audio: automatic speech recognition and audio classification.
  • 🐙 Multimodal: zero-shot image classification.

Transformers.js uses ONNX Runtime to run models in the browser. The best part about it, is that you can easily convert your pretrained PyTorch, TensorFlow, or JAX models to ONNX using 🤗 Optimum.

For more information, check out the full documentation.

Quick tour

It's super simple to translate from existing code! Just like the python library, we support the pipeline API. Pipelines group together a pretrained model with preprocessing of inputs and postprocessing of outputs, making it the easiest way to run models with the library.

<table> <tr> <th width="440px" align="center"><b>Python (original)</b></th> <th width="440px" align="center"><b>Javascript (ours)</b></th> </tr> <tr> <td>
from transformers import pipeline # Allocate a pipeline for sentiment-analysis pipe = pipeline('sentiment-analysis') out = pipe('I love transformers!') # [{'label': 'POSITIVE', 'score': 0.999806941}]
</td> <td>
import { pipeline } from '@xenova/transformers'; // Allocate a pipeline for sentiment-analysis let pipe = await pipeline('sentiment-analysis'); let out = await pipe('I love transformers!'); // [{'label': 'POSITIVE', 'score': 0.999817686}]
</td> </tr> </table>

You can also use a different model by specifying the model id or path as the second argument to the pipeline function. For example:

// Use a different model for sentiment-analysis let pipe = await pipeline('sentiment-analysis', 'Xenova/bert-base-multilingual-uncased-sentiment');

Installation

To install via NPM, run:

npm i @xenova/transformers

Alternatively, you can use it in vanilla JS, without any bundler, by using a CDN or static hosting. For example, using ES Modules, you can import the library with:

<script type="module"> import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2'; </script>

Examples

Want to jump straight in? Get started with one of our sample applications/templates:

NameDescriptionLinks
Whisper WebSpeech recognition w/ Whispercode, demo
Doodle DashReal-time sketch-recognition gameblog, code, demo
Code PlaygroundIn-browser code completion websitecode, demo
Semantic Image Search (client-side)Search for images with textcode, demo
Semantic Image Search (server-side)Search for images with text (Supabase)code, demo
Vanilla JavaScriptIn-browser object detectionvideo, code, demo
ReactMultilingual translation websitecode, demo
Text to speech (client-side)In-browser speech synthesiscode, demo
Browser extensionText classification extensioncode
ElectronText classification applicationcode
Next.js (client-side)Sentiment analysis (in-browser inference)code, demo
Next.js (server-side)Sentiment analysis (Node.js inference)code, demo
Node.jsSentiment analysis APIcode
Demo siteA collection of demoscode, demo

Check out the Transformers.js template on Hugging Face to get started in one click!

Custom usage

By default, Transformers.js uses hosted pretrained models and precompiled WASM binaries, which should work out-of-the-box. You can customize this as follows:

Settings

import { env } from '@xenova/transformers'; // Specify a custom location for models (defaults to '/models/'). env.localModelPath = '/path/to/models/'; // Disable the loading of remote models from the Hugging Face Hub: env.allowRemoteModels = false; // Set location of .wasm files. Defaults to use a CDN. env.backends.onnx.wasm.wasmPaths = '/path/to/files/';

For a full list of available settings, check out the API Reference.

Convert your models to ONNX

We recommend using our conversion script to convert your PyTorch, TensorFlow, or JAX models to ONNX in a single command. Behind the scenes, it uses 🤗 Optimum to perform conversion and quantization of your model.

python -m scripts.convert --quantize --model_id <model_name_or_path>

For example, convert and quantize bert-base-uncased using:

python -m scripts.convert --quantize --model_id bert-base-uncased

This will save the following files to ./models/:

bert-base-uncased/
├── config.json
├── tokenizer.json
├── tokenizer_config.json
└── onnx/
    ├── model.onnx
    └── model_quantized.onnx

For the full list of supported architectures, see the Optimum documentation.

Supported tasks/models

Here is the list of all tasks and architectures currently supported by Transformers.js. If you don't see your task/model listed here or it is not yet supported, feel free to open up a feature request here.

To find compatible models on the Hub, select the "transformers.js" library tag in the filter menu (or visit this link). You can refine your search by selecting the task you're interested in (e.g., text-classification).

Tasks

Natural Language Processing

TaskIDDescriptionSupported?
Fill-Maskfill-maskMasking some of the words in a sentence and predicting which words should replace those masks.(docs)<br>(models)
Question Answeringquestion-answeringRetrieve the answer to a question from a given text.(docs)<br>(models)
Sentence Similaritysentence-similarityDetermining how similar two texts are.(docs)<br>(models)
SummarizationsummarizationProducing a shorter version of a document while preserving its important information.(docs)<br>(models)
Table Question Answeringtable-question-answeringAnswering a question about information from a given table.
Text Classificationtext-classification or sentiment-analysisAssigning a label or class to a given text.(docs)<br>(models)
Text Generationtext-generationProducing new text by predicting the next word in a sequence.(docs)<br>(models)
Text-to-text Generationtext2text-generationConverting one text sequence into another text sequence.(docs)<br>(models)
Token Classificationtoken-classification or nerAssigning a label to each token in a text.(docs)<br>(models)
TranslationtranslationConverting text from one language to another.(docs)<br>(models)
Zero-Shot Classificationzero-shot-classificationClassifying text into classes that are unseen during training.(docs)<br>(models)
Feature Extractionfeature-extractionTransforming raw data into numerical features that can be processed while preserving the information in the original dataset.(docs)<br>(models)

Vision

TaskIDDescriptionSupported?
Depth Estimationdepth-estimationPredicting the depth of objects present in an image.(docs)<br>(models)
Image Classificationimage-classificationAssigning a label or class to an entire image.

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多