浏览器端运行先进机器学习模型的JavaScript库
Transformers.js是一个JavaScript库,可在浏览器中直接运行Hugging Face的Transformers模型,无需服务器。该库支持自然语言处理、计算机视觉、音频处理和多模态任务,使用ONNX Runtime执行模型。它的设计与Python版Transformers功能相同,提供简单API运行预训练模型,并支持将自定义模型转换为ONNX格式。
State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!
Transformers.js is designed to be functionally equivalent to Hugging Face's transformers python library, meaning you can run the same pretrained models using a very similar API. These models support common tasks in different modalities, such as:
Transformers.js uses ONNX Runtime to run models in the browser. The best part about it, is that you can easily convert your pretrained PyTorch, TensorFlow, or JAX models to ONNX using 🤗 Optimum.
For more information, check out the full documentation.
It's super simple to translate from existing code! Just like the python library, we support the pipeline
API. Pipelines group together a pretrained model with preprocessing of inputs and postprocessing of outputs, making it the easiest way to run models with the library.
</td> <td>from transformers import pipeline # Allocate a pipeline for sentiment-analysis pipe = pipeline('sentiment-analysis') out = pipe('I love transformers!') # [{'label': 'POSITIVE', 'score': 0.999806941}]
</td> </tr> </table>import { pipeline } from '@xenova/transformers'; // Allocate a pipeline for sentiment-analysis let pipe = await pipeline('sentiment-analysis'); let out = await pipe('I love transformers!'); // [{'label': 'POSITIVE', 'score': 0.999817686}]
You can also use a different model by specifying the model id or path as the second argument to the pipeline
function. For example:
// Use a different model for sentiment-analysis let pipe = await pipeline('sentiment-analysis', 'Xenova/bert-base-multilingual-uncased-sentiment');
To install via NPM, run:
npm i @xenova/transformers
Alternatively, you can use it in vanilla JS, without any bundler, by using a CDN or static hosting. For example, using ES Modules, you can import the library with:
<script type="module"> import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2'; </script>
Want to jump straight in? Get started with one of our sample applications/templates:
Name | Description | Links |
---|---|---|
Whisper Web | Speech recognition w/ Whisper | code, demo |
Doodle Dash | Real-time sketch-recognition game | blog, code, demo |
Code Playground | In-browser code completion website | code, demo |
Semantic Image Search (client-side) | Search for images with text | code, demo |
Semantic Image Search (server-side) | Search for images with text (Supabase) | code, demo |
Vanilla JavaScript | In-browser object detection | video, code, demo |
React | Multilingual translation website | code, demo |
Text to speech (client-side) | In-browser speech synthesis | code, demo |
Browser extension | Text classification extension | code |
Electron | Text classification application | code |
Next.js (client-side) | Sentiment analysis (in-browser inference) | code, demo |
Next.js (server-side) | Sentiment analysis (Node.js inference) | code, demo |
Node.js | Sentiment analysis API | code |
Demo site | A collection of demos | code, demo |
Check out the Transformers.js template on Hugging Face to get started in one click!
By default, Transformers.js uses hosted pretrained models and precompiled WASM binaries, which should work out-of-the-box. You can customize this as follows:
import { env } from '@xenova/transformers'; // Specify a custom location for models (defaults to '/models/'). env.localModelPath = '/path/to/models/'; // Disable the loading of remote models from the Hugging Face Hub: env.allowRemoteModels = false; // Set location of .wasm files. Defaults to use a CDN. env.backends.onnx.wasm.wasmPaths = '/path/to/files/';
For a full list of available settings, check out the API Reference.
We recommend using our conversion script to convert your PyTorch, TensorFlow, or JAX models to ONNX in a single command. Behind the scenes, it uses 🤗 Optimum to perform conversion and quantization of your model.
python -m scripts.convert --quantize --model_id <model_name_or_path>
For example, convert and quantize bert-base-uncased using:
python -m scripts.convert --quantize --model_id bert-base-uncased
This will save the following files to ./models/
:
bert-base-uncased/
├── config.json
├── tokenizer.json
├── tokenizer_config.json
└── onnx/
├── model.onnx
└── model_quantized.onnx
For the full list of supported architectures, see the Optimum documentation.
Here is the list of all tasks and architectures currently supported by Transformers.js. If you don't see your task/model listed here or it is not yet supported, feel free to open up a feature request here.
To find compatible models on the Hub, select the "transformers.js" library tag in the filter menu (or visit this link). You can refine your search by selecting the task you're interested in (e.g., text-classification).
Task | ID | Description | Supported? |
---|---|---|---|
Fill-Mask | fill-mask | Masking some of the words in a sentence and predicting which words should replace those masks. | ✅ (docs)<br>(models) |
Question Answering | question-answering | Retrieve the answer to a question from a given text. | ✅ (docs)<br>(models) |
Sentence Similarity | sentence-similarity | Determining how similar two texts are. | ✅ (docs)<br>(models) |
Summarization | summarization | Producing a shorter version of a document while preserving its important information. | ✅ (docs)<br>(models) |
Table Question Answering | table-question-answering | Answering a question about information from a given table. | ❌ |
Text Classification | text-classification or sentiment-analysis | Assigning a label or class to a given text. | ✅ (docs)<br>(models) |
Text Generation | text-generation | Producing new text by predicting the next word in a sequence. | ✅ (docs)<br>(models) |
Text-to-text Generation | text2text-generation | Converting one text sequence into another text sequence. | ✅ (docs)<br>(models) |
Token Classification | token-classification or ner | Assigning a label to each token in a text. | ✅ (docs)<br>(models) |
Translation | translation | Converting text from one language to another. | ✅ (docs)<br>(models) |
Zero-Shot Classification | zero-shot-classification | Classifying text into classes that are unseen during training. | ✅ (docs)<br>(models) |
Feature Extraction | feature-extraction | Transforming raw data into numerical features that can be processed while preserving the information in the original dataset. | ✅ (docs)<br>(models) |
Task | ID | Description | Supported? |
---|---|---|---|
Depth Estimation | depth-estimation | Predicting the depth of objects present in an image. | ✅ (docs)<br>(models) |
Image Classification | image-classification | Assigning a label or class to an entire image. | ✅ |
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号