GeoTorchAI

GeoTorchAI

基于PyTorch的空间时序深度学习框架

GeoTorchAI是基于PyTorch和Apache Sedona的空间时序深度学习框架,专为遥感影像和时空数据分析设计。该框架提供数据集、模型、转换和预处理模块,支持栅格和网格数据处理。它可应用于遥感影像分类、分割,以及交通流量、天气预报等时空数据预测任务。GeoTorchAI通过pip安装,并提供示例代码,方便研究人员和开发者快速上手使用。

GeoTorchAI深度学习框架空间时序数据卫星图像分类PyTorchGithub开源项目

GeoTorchAI:时空深度学习框架

GeoTorchAI是基于PyTorch和Apache Sedona的时空深度学习框架。它使时空机器学习从业者能够轻松高效地实现针对栅格影像数据集和时空非影像数据集应用的深度学习模型。栅格影像数据集的深度学习应用包括卫星图像分类和卫星图像分割。时空非影像数据集的深度学习应用主要是预测任务,包括但不限于交通流量和交通流预测、出租车/自行车流量/数量预测、降水预报和天气预报。

[图片]

GeoTorchAI模块

GeoTorchAI包含栅格影像和时空非影像类别的各种深度学习和数据预处理模块。深度学习模块提供即用型栅格和网格数据集、转换和神经网络模型。

[图片]

  • 数据集:此模块包含栅格数据模型和基于网格的时空模型的已处理流行数据集。数据集以即用型PyTorch数据集形式提供。
  • 模型:这些是用于流行栅格数据模型和基于网格的时空模型的PyTorch层。
  • 转换:可在模型训练期间应用于数据集样本的各种转换操作。
  • 预处理:支持在Apache Spark和Apache Sedona之上对栅格影像和时空非影像数据集进行可扩展的预处理。

文档

有关安装、API和编程指南的详细文档可在GeoTorchAI网站上获取。

安装

可以通过运行以下命令安装GeoTorchAI:

pip install geotorchai

GeoTorchAI可在PyPI上获取。有关所需和可选依赖项的更多说明,请访问网站。

示例

各种应用(包括模型训练和数据预处理)的端到端编码示例可在我们的binders和examples部分找到。

我们在下面逐步展示了使用GeoTorchAI进行卫星图像分类的一个非常简短的示例。训练卫星图像分类模型包括三个步骤:加载数据集、初始化模型和参数以及训练模型。我们选择DeepSatV2模型来对EuroSAT卫星图像进行分类。

EuroSAT图像类别

  • 一年生作物
  • 森林
  • 草本植被
  • 高速公路
  • 工业
  • 牧场
  • 永久性作物
  • 住宅
  • 河流
  • 海洋/湖泊

高速公路图像的光谱波段

[图片]

工业图像的光谱波段

[图片]

加载训练数据集

加载EuroSAT数据集。设置download=True将在给定目录中下载完整数据。如果数据已可用,则设置download=False。

full_data = geotorchai.datasets.raser.EuroSAT(root="data/eurosat", download=True, include_additional_features=True)

将数据分为80%训练集和20%验证集

dataset_size = len(full_data)
indices = list(range(dataset_size))
split = int(np.floor(0.2 * dataset_size))
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]

train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indices)
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)

train_loader = torch.utils.data.DataLoader(full_data, batch_size=16, sampler=train_sampler) val_loader = torch.utils.data.DataLoader(full_data, batch_size=16, sampler=valid_sampler)

#### 在GPU上训练和评估
如果用于训练模型的设备有可用的GPU,那么模型、损失函数和张量可以加载到GPU上。首先根据GPU的可用性初始化设备为CPU或GPU。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

之后,通过调用.to(device)可以将模型、损失函数和张量加载到CPU或GPU上。具体示例请参见后续部分。
#### 初始化模型和参数
模型初始化参数如in_channel、in_width、in_height和num_classes是基于SAT6数据集的属性。

model = DeepSatV2(in_channels=13, in_height=64, in_width=64, num_classes=10, num_filtered_features=len(full_data.ADDITIONAL_FEATURES)) loss_fn = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

将模型和损失函数加载到GPU或CPU

model.to(device) loss_fn.to(device)

#### 训练模型一个周期

for i, sample in enumerate(train_loader): inputs, labels, features = sample # 将张量加载到GPU或CPU inputs = inputs.to(device) features = features.type(torch.FloatTensor).to(device) labels = labels.to(device) # 前向传播 outputs = model(inputs, features) loss = loss_fn(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step()

#### 在验证数据集上评估模型

model.eval() total_sample = 0 correct = 0 for i, sample in enumerate(val_loader): inputs, labels, features = sample # 将张量加载到GPU或CPU inputs = inputs.to(device) features = features.type(torch.FloatTensor).to(device) labels = labels.to(device) # 前向传播 outputs = model(inputs, features) total_sample += len(labels) _, predicted = outputs.max(1) correct += predicted.eq(labels).sum().item() val_accuracy = 100 * correct / total_sample print("验证准确率:", val_accuracy, "%")


## 为该项目做贡献
按照[此处](https://github.com/DataSystemsLab/GeoTorchAI/blob/main/CONTRIBUTING.md)提供的说明进行操作。

## 该项目的其他贡献
我们还为[Apache Sedona](https://sedona.apache.org/)贡献了对GeoTiff栅格图像的转换和写入支持。这项贡献也是本项目的一部分。贡献参考:[提交记录](https://github.com/apache/incubator-sedona/commits?author=kanchanchy)

## 引用本工作:
Kanchan Chowdhury and Mohamed Sarwat. 2022. GeoTorch: a spatiotemporal deep learning framework. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '22). Association for Computing Machinery, New York, NY, USA, Article 100, 1–4. https://doi.org/10.1145/3557915.3561036

### BibTex:

@inproceedings{10.1145/3557915.3561036, author = {Chowdhury, Kanchan and Sarwat, Mohamed}, title = {GeoTorch: A Spatiotemporal Deep Learning Framework}, year = {2022}, isbn = {9781450395298}, publisher = {Association for Computing Machinery}, url = {https://doi.org/10.1145/3557915.3561036}, doi = {10.1145/3557915.3561036}, articleno = {100}, numpages = {4}, location = {Seattle, Washington}, series = {SIGSPATIAL '22} }

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多