awesome-remote-sensing-change-detection

awesome-remote-sensing-change-detection

遥感变化检测数据集与代码资源汇总

项目整理了遥感变化检测领域的关键资源,包括数据集、算法代码和竞赛信息。数据类型覆盖多光谱、高光谱和3D等,同时收录了传统方法和深度学习的实现代码。为该领域研究和应用提供全面参考,内容持续更新。

遥感变化检测数据集多光谱高分辨率深度学习Github开源项目

<p align=center>Awesome Remote Sensing Change Detection</p>

Awesome Maintenance PR's Welcome made-with-Markdown

List of datasets, codes, and contests related to remote sensing change detection.

Contents

Dateset

Multispectral

With Label

  • 2024.Hi-CNA dataset
    The Hi-CNA is a high-resolution remote sensing dataset for cropland non-agriculturalization (CNA) tasks, featuring high-quality semantic and change annotations for cropland. It covers over 1100 km² in Hebei, Shanxi, Shandong, and Hubei provinces in China, areas known for diverse crop planting patterns. The dataset includes two temporal phases: 2015-2017 and 2020-2022, capturing multiple crop phenological periods.The Hi-CNA dataset is derived from multispectral GF-2 fusion images with a 0.8m spatial resolution across four bands (visible and near-infrared). All images are cropped to 512x512, resulting in 6797 pairs of dual-temporal images with corresponding annotations. Paper: Sun et al., 2024

  • 2023.ChangeNet
    The ChangeNet dataset comprises 31,000 pairs of multi-temporal images, each with a resolution of 0.3 meters. It encapsulates a diverse array of complex scenes from 100 different cities. Additionally, the dataset includes six pixel-level annotated categories, which encompass the classes of "building," "farmland," "bareland," "water," "road," and "unchanged". Paper: Ji et al., 2023

  • 2023.SMARS (Simulated Multimodal Aerial Remote Sensing) dataset
    SMARS is a large-scale synthetic dataset, comprising pairs of scenarios simulating urban changes, designed for training and validating change detection applications, as well as urban segmentation and building extraction tasks. The dataset simulates the terrains of two European cities: Paris and Venice, generating scenario pairs named SParis and SVenice, each accompanied by ortho-images and Digital Surface Models (DSMs). Changes between the before and after scenarios are simulated, with the latter having more buildings, less green space, and some simulated demolished buildings. To enhance similarity with real data, input images are further processed into ortho-photos and digital elevation models through a standard photogrammetric process, including different lighting conditions and other effects, such as blurred building boundaries. Reference ground truth maps are directly used for training and validation of change detection, building extraction, and urban segmentation tasks. The data is rendered at two Ground Sampling Distances (GSDs) of 30cm and 50cm. Each tile, from left to right, includes: optical image, DSM, semantic and building masks. For change detection, the difference between two events is used as the ground truth. Paper: Reyes et al., 2023

  • 2023.HRCUS-CD (High-Resolution Complex Urban Scene Change Detection)
    The proposed High-Resolution Complex Urban Scene Change Detection (HRCUS-CD) dataset consists of 11,388 pairs of cropped high-resolution remote sensing images. The image size is 256 × 256 pixels with a resolution of 0.5 meters. The dataset includes over 12,000 annotated instances of changes. The data was collected in Zhuhai, China. It contains two main acquisition areas from two image sources: the first is mainly the urban built-up area, with a time span from 2019 to 2022. Considering the short time interval and the fact that this area is mostly built-up, the building changes’ areas are small. The second area spans from 2010 to 2018, and contains farmland and mountains, with a small number of old civil houses and buildings in the early period, and the area of building change is large later. These two types of high-resolution RSIs focus on built-up areas and new urban areas. Paper: Zhang et al., 2023

  • 2023.GVLM
    The Global Very-High-Resolution Landslide Mapping (GVLM) dataset is the first large-scale and open-source VHR landslide mapping dataset. It includes 17 bitemporal very-high-resolution imagery pairs with a spatial resolution of 0.59 m acquired via Google Earth service. Each sub-dataset contains a pair of bitemporal images and the corresponding ground-truth map. The landslide sites in different geographical locations have various sizes, shapes, occurrence times, spatial distributions, phenology states, and land cover types, resulting in considerable spectral heterogeneity and intensity variations in the remote sensing imagery. The GVLM dataset can be used to develop and evaluate machine/deep learning models for change detection, semantic segmentation and landslide extraction. Paper: Zhang et al., 2023

  • 2023.EGY-BCD
    The EGY-BCD dataset is designed to detect building changes from high-resolution satellite imagery with a resolution of 0.25 m/pixel (level 19). The dataset includes four urban and coastal areas in Egypt, collected from Google Earth over two different periods between 2015 and 2022. The dataset contains 6091 pairs of small images of size 256×256 and is randomly divided into three sets: a training set (70%), a validation set (20%), and a test set (10%). The ground-truth data for each pair of images is labeled into two categories, "no-change" or "change," to train the proposed network. Paper: Holail et al.2023

  • 2023.SI-BU dataset
    The SI-BU dataset comprises post-phase satellite imagery captured from Google Earth (Google Inc.) in 2021 of Guiyang, Guizhou province, China, along with corresponding labels. The dataset covers an area of approximately 172 km2 and contains buildings of varying height, scale, and appearance. The images and labels were cropped into non-overlapping pairs of 512 × 512 pixels, with 3,604 pairs for training and 1,328 pairs for testing. The labels indicate four categories: background, unchanged buildings, newly constructed buildings, and removed buildings, which are assigned values of 0, 1, 2, and 3, respectively. The labels were meticulously annotated by image interpretation experts to indicate changes between the images and building masks collected from the same location in 2019. The dataset exhibits an off-nadir problem, particularly for high-rise buildings, due to the offset between building rooftops and footprints, which makes it challenging to automatically extract building changes from the dataset. Paper: Liao et al.2023

  • 2023.CNAM-CD
    CNAM-CD is a multi-class change detection dataset that collects images of 12 different urban scenes from the past decade. The dataset selects 12 State-level New Areas in China as the study area and contains 2503 pairs of GeoTiff format images with a pixel size of 512×512. The images were captured at different times from 2013 to 2022. The data source is Google Earth, and the resolution is 0.5m. Paper: Zhou et al.2023

  • 2023.BANDON (Building Change Detection with Off-nadir Aerial Images Dataset)
    The BANDON dataset is designed for building change detection using off-nadir aerial images. It consists of 2283 image pairs from urban and rural areas with corresponding change, BT-flows, segmentation, and ST-offsets labels (test sets don't have auxiliary annotations). BANDON provides novel data for the off-nadir building change detection task, and its detailed annotations support multi-task learning in aerial images. Paper: Pang et al.2023

  • 2022.LEVIR Change Captioning (LEVIR-CC) dataset
    LEVIR-CC dataset contains 10077 pairs of bitemporal RS images and 50385 sentences describing the differences between images. The images of the LEVIR-CC dataset are mainly from the CD dataset LEVIR-CD. LEVIR-CC dataset may help explore models to align visual changes and language in RS images. Paper: Liu et al.2022

  • 2022.DynamicEarthNet
    The DynamicEarthNet dataset includes daily satellite data from January 2018 to December 2019, covering 75 areas of interest around the world with diverse land cover changes. It provides a sequence of daily revisited images for each region, as well as pixel-wise semantic labels for the first day of each month at a resolution of 1024x1024 and pixel granularity of 3 meters, which serve as ground-truth for defining land cover changes over the two-year period. Paper: Toker A et al.2022

  • 2022.Multisource built-up change (MSBC) and multisource OSCD (MSOSCD) datasets
    The datasets are made to fill the gap of built-up CD datasets including multispectral, SAR, and VHR. MSBC is labeled based on GF-2 VHR images, and the MSOSCD is reformed from an existing dataset—Onera Satellite CD(OSCD) dataset. Paper: Li et al.2022

  • 2022.CLCD dataset
    The CLCD dataset consists of 600 pairs image of cropland change samples, with 320 pairs for training, 120 pairs for validation and 120 pairs for testing. The bi-temporal images in CLCD were collected by Gaofen-2 in Guangdong Province, China, in 2017 and 2019, respectively, with spatial resolution ranged from 0.5 to 2 m. Each group of samples is composed of two images of 512 × 512 and a corresponding binary label of cropland change. The main types of change annotated in CLCD include buildings, roads, lakes and bare soil lands, etc. Paper: Liu et al.2022

  • 2021.QFabric
    QFabric is a comprehensive temporal multi-task dataset with 450,000 change polygons across 504 locations in 100 cities, using imagery from Maxar’s WorldView-2 Satellite collected between January 2014 and July 2020. It includes 6 change types and 9 change status classes, and the accompanying geography and environment metadata provides valuable context for deep neural network development. Paper: Verma S et al.2021

  • 2021.HTCD dataset
    The HTCD dataset, a new Satellite-UAV heterogeneous image data set, was built using the satellite images from Google Earth and UAV images from Open Aerial Map. The size of the satellite image is 11 K×15 K pixels. While the UAV image is consisted of 15 image blocks, in total 1.38 M×1.04 M pixels. The ground resolutions of them are 0.5971 m and 7.465 cm, respectively. Images and labels are all stored in GeoTiff format with location information, for the convenience of further analysis and research. Paper: Shao et al.2021

  • 2021.Multi-modal Supervised Change Detection Data
    Sentinel-1 SAR data were provided on the basis of OSCD dataset for multimodal supervised change detection (SAR-SAR CD or Optical-SAR multi-modal CD). Paper: Ebel et al.2021

  • 2021.S2Looking
    S2Looking, a building change detection dataset that contains large-scale side-looking satellite images captured at varying off-nadir angles. It consists of 5000 registered bitemporal image pairs (size of 1024*1024, 0.5 ~ 0.8 m/pixel) of rural areas throughout the world and more than 65,920 annotated change instances. It provides two label maps to separately indicate the newly built and demolished building regions for each sample in the dataset. Paper: Shen et al.2021

  • 2021.SYSU-CD
    The dataset contains 20000 pairs of 0.5-m aerial images of size 256×256 taken between the years 2007 and 2014 in Hong Kong.The main types of changes in the dataset include: (a) newly built urban buildings; (b) suburban dilation; (c) groundwork before construction; (d) change of vegetation; (e) road expansion; (f) sea construction. Paper: Shi et al.2021

  • 2021.Sentinel-2 Multitemporal Cities Pairs (S2MTCP) dataset
    The S2MTCP dataset contains N = 1520 image pairs, spread over all inhabited continents, with the highest concentration of image pairs in North-America, Europe, and Asia. Bands with a spatial resolution smaller than 10 m are resampled to 10 m and images are cropped to approximately 600x600 pixels. It was created for self-supervised training. Paper: Leenstra et al.2021

  • 2020.Hi-UCD
    Hi-UCD focuses on urban changes and uses ultra-high resolution images to construct multi-temporal semantic changes to achieve refined change detection. The study area of Hi-UCD is a part of Tallinn, the capital of Estonia, with an area of 30km2. There are 359 image pairs in 2017-2018, 386 pairs in 2018-2019, and 548 pairs in 2017-2019, including images, semantic maps, and change maps at different times. Each image has a size of 1024 x 1024 and a spatial resolution of 0.1 m. There are 9 types of objects, including natural objects (water, grassland, woodland,

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多