webrpc is a schema-driven approach to writing backend servers for the Web. Write your server's
API interface in a schema format of RIDL or JSON,
and then run webrpc-gen
to generate the networking source code for your server and client apps. From the schema,
webrpc-gen
will generate application base class types/interfaces, JSON encoders, and networking code. In doing
so, it's able to generate fully functioning and typed client libraries to communicate with your server. Enjoy
strongly-typed Web services and never having to write an API client library again.
Under the hood, webrpc is a Web service meta-protocol, schema and code-generator tool for simplifying the development of backend services for modern Web applications.
webrpc-gen -schema=example.ridl -target=golang -pkg=service -server -client -out=./service/proto.gen.go
webrpc-gen -schema=example.ridl -target=typescript -client -out=./web/client.ts
another option is to copy the hello-webrpc example, and adapt for your own webapp and server.
Btw, check out https://marketplace.visualstudio.com/items?itemName=XanderAppWorks.vscode-webrpc-ridl-syntax for VSCode plugin for RIDL synx highlighting.
Generator | Description | Schema | Client | Server |
---|---|---|---|---|
golang | Go 1.16+ | v1 | ✅ | ✅ |
typescript | TypeScript | v1 | ✅ | ✅ |
javascript | JavaScript (ES6) | v1 | ✅ | ✅ |
kotlin | Kotlin (coroutines, moshi, ktor) | v1 | ✅ | |
dart | Dart 3.1+ | v1 | ✅ | |
openapi | OpenAPI 3.x (Swagger) | v1 | ✅ * | ✅ * |
..contribute more! webrpc generators are just Go templates (similar to Hugo or Helm).
Here is an example webrpc schema in RIDL format (a new documentation-like format introduced by webrpc)
webrpc = v1
name = your-app
version = v0.1.0
struct User
- id: uint64
- username: string
- createdAt?: timestamp
struct UsersQueryFilter
- page?: uint32
- name?: string
- location?: string
service ExampleService
- Ping()
- Status() => (status: bool)
- GetUserByID(userID: uint64) => (user: User)
- IsOnline(user: User) => (online: bool)
- ListUsers(q?: UsersQueryFilter) => (page: uint32, users: []User)
error 100 RateLimited "too many requests" HTTP 429
error 101 DatabaseDown "service outage" HTTP 503
Generate webrpc Go server+client code:
webrpc-gen -schema=example.ridl -target=golang -pkg=main -server -client -out=./example.gen.go
and see the generated ./example.gen.go
file of types, server and client in Go. This is essentially
how the golang-basics example was built.
Example | Description |
---|---|
hello-webrpc | Go server <=> Javascript webapp |
hello-webrpc-ts | Go server <=> Typescript webapp |
golang-basics | Go server <=> Go client |
golang-nodejs | Go server <=> Node.js (Javascript ES6) client |
node-ts | Node.js server <=> Typescript webapp client |
TLDR; it's much simpler + faster to write and consume a webrpc service than traditional approaches like a REST API or gRPC service.
Writing a Web service / microservice takes a lot of work and time. REST is making me tired. There are many pieces to build -- designing the routes of your service, agreeing on conventions for the routes with your team, the request payloads, the response payloads, writing the actual server logic, routing the methods and requests to the server handlers, implementing the handlers, and then writing a client library for your desired language so it can speak to your Web service. Yikes, it's a lot of work. Want to add an additional field or handler? yea, you have to go through the entire cycle. And what about type-safety across the wire?
webrpc automates a lot the work for you. Now from a single webrpc schema file,
you can use the webrpc-gen
cli to generate source code for:
webrpc services speak JSON, as our goals are to build services that communicate with webapps. We optimize for developer experience, ease of use and productivity when building backends for modern webapps. However, webrpc also works great for service<->service communication, but it won't be as fast as gRPC in that scenario, but I'd be surprised to hear if for the majority of cases that this would be a bottleneck or costly tradeoff.
webrpc is heavily inspired by gRPC and Twirp. It is architecturally the same and has a similar workflow, but simpler. In fact, the webrpc schema is similar in design to protobuf, as in we have messages (structs) and RPC methods, but the type system is arguably more flexible and code-gen tooling is simpler. The webrpc schema is a documentation-like language for describing a server's api interface and the type system within is inspired by Go, Typescript and WASM.
We've been thinking about webrpc's design for years, and were happy to see gRPC and Twirp come onto the scene and pave the way with some great patterns. Over the years and after writing dozens of backends for Javascript-based Webapps and native mobile apps, and even built prior libraries like chi, a HTTP router for Go -- we asked ourselves:
Why have "Rails" and "Django" been such productive frameworks for writing webapps? And the answer we came to is that its productive because the server and client are the same program, running in the same process on the same computer. Rails/Django/others like it, when rendering client-state can just call a function in the same program, the client and the server are within the same domain and same state -- everything is a function-call away. Compare this to modern app development such as writing a React.js SPA or a native iOS mobile app, where the app speaks to an external API server with now the huge added effort to bridge data/runtime from one namespace (the app) to an entirely other namespace (the server). It's too much work and takes too much time, and is too brittle. There is a better way! instead of writing the code.. just generate it. If we generate all of the code to native objects in both app/server, suddenly, we can make a remote service once again feel like calling a method on the same program running on the same computer/process. Remote-Procedure-Call works!
Finally, we'd like to compare generated RPC services (gRPC/Twirp/webrpc/other) to the most common pattern to writing services by "making a RESTful API", where the machinery is similar to RPC services. Picture the flow of data when a client calls out to a server -- from a client runtime proxy-object, we encode that object, send it over the wire, the server decodes it into a server runtime proxy-object, the server handler queries the db, returns a proxy object, encodes it, and sends the function return data over the wire again. That is a ton of work, especially if you have to write it by hand and then maintain robust code in both the client and the server. Ahh, I just want to call a function on my server from my app! Save yourself the work and time, and code-generate it instead - Enter gRPC / Twirp .. and now, webrpc :)
Future goals/work:
The webrpc schema type system is inspired by Go and TypeScript, and is simple and flexible enough to cover the wide variety of language targets, designed to target RPC communication with Web applications and other Web services.
High-level features:
For more information please see the schema readme.
make build
make test
make install
MIT
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号