DoLa

DoLa

对比层解码提升大语言模型事实性

DoLa是一种新型解码策略,通过对比大语言模型不同层输出来提高内容事实性。无需外部知识或额外微调,即可减少模型幻觉,提升TruthfulQA等任务表现。该方法利用模型事实知识的层级分布特性,为增强AI系统可靠性开辟新途径。

DoLa大语言模型解码策略事实性层对比Github开源项目

DoLa: 通过对比层改进大型语言模型的事实性解码

许可证: MIT Arxiv Hugging Face Transformers 推文 GitHub 星标

在 Colab 中打开

论文"DoLa: 通过对比层改进大型语言模型的事实性解码"的代码

论文链接: https://arxiv.org/abs/2309.03883 作者: Yung-Sung Chuang $^\dagger$, Yujia Xie $^\ddagger$, Hongyin Luo $^\dagger$, Yoon Kim $^\dagger$, James Glass $^\dagger$, Pengcheng He $^\ddagger$ $^\dagger$ 麻省理工学院, $^\ddagger$ 微软

概述

DoLa

尽管大型语言模型(LLMs)具有令人印象深刻的能力,但它们容易产生幻觉,即生成偏离预训练期间所见事实的内容。我们提出了一种简单的解码策略,用于减少预训练LLMs的幻觉,该策略无需依赖检索外部知识或额外的微调。我们的方法通过对比将后层与前层投射到词汇空间所得到的logits差异来获得下一个标记的分布,利用了LLMs中的事实知识通常局限于特定的transformer层这一特性。我们发现这种通过对比层进行解码(DoLA)的方法能够更好地呈现事实知识并减少不正确事实的生成。DoLA在多项选择任务和开放式生成任务中持续提高真实性,例如将LLaMA系列模型在TruthfulQA上的表现提高了12-17个百分点,展示了其在使LLMs可靠生成真实事实方面的潜力。

设置

pip install -e transformers-4.28.1
pip install datasets
pip install accelerate
pip install openai # -> 仅用于truthfulqa和gpt4_eval

实验

参数

参数示例描述
--model-namehuggyllama/llama-7b指定要使用的模型,目前我们只支持LLaMA-v1。
--data-path/path/to/dataset数据集文件或文件夹的路径。
--output-pathoutput-path.json存储输出结果的位置。
--num-gpus1要使用的GPU数量,7B/13B/30B/65B模型大小分别对应1/2/4/8
--max_gpu_memory27要分配的最大GPU内存大小(以GiB为单位)。默认值:27(适用于32G V100)。

理解 --early-exit-layers

--early-exit-layers参数接受一个字符串,其中包含一系列由逗号分隔的层数,之间没有空格。通过指定不同数量的层,我们可以使模型以不同的模式进行解码。

指定的层数示例(字符串)解码模式描述
1-1从最后一层输出进行朴素解码
216,32使用第二个指定的层(即32)作为mature_layer,第一个指定的层(即16)作为premature_layer进行DoLa-static解码
>20,2,4,6,8,10,12,14,32使用最后指定的层(即32)作为mature_layer,所有前面的层(即0,2,4,6,8,10,12,14)作为candidate_premature_layers进行DoLa解码

FACTOR (多项选择)

请从 https://github.com/AI21Labs/factor 下载数据文件 wiki_factor.csv

基线

python factor_eval.py --model-name huggyllama/llama-7b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 1 python factor_eval.py --model-name huggyllama/llama-13b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 2 python factor_eval.py --model-name huggyllama/llama-30b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 4 python factor_eval.py --model-name huggyllama/llama-65b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 8

DoLa

python factor_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 1 python factor_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 2 python factor_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 4 python factor_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 8

TruthfulQA (多项选择)

--data-path应该是一个包含TruthfulQA.csv的文件夹。如果文件不存在,将自动下载。

基线

python tfqa_mc_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python tfqa_mc_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python tfqa_mc_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python tfqa_mc_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python tfqa_mc_eval.py --model-name huggyllama/llama-7b --early-exit-layers 16,18,20,22,24,26,28,30,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python tfqa_mc_eval.py --model-name huggyllama/llama-13b --early-exit-layers 20,22,24,26,28,30,32,34,36,38,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python tfqa_mc_eval.py --model-name huggyllama/llama-30b --early-exit-layers 40,42,44,46,48,50,52,54,56,58,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python tfqa_mc_eval.py --model-name huggyllama/llama-65b --early-exit-layers 60,62,64,66,68,70,72,74,76,78,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

TruthfulQA

为了评估TruthfulQA的开放式生成结果,我们需要通过OpenAI API微调两个GPT-3 curie模型:

openai api fine_tunes.create -t finetune_truth.jsonl -m curie --n_epochs 5 --batch_size 21 --learning_rate_multiplier 0.1
openai api fine_tunes.create -t finetune_info.jsonl -m curie --n_epochs 5 --batch_size 21 --learning_rate_multiplier 0.1

微调后,我们可以通过openai api fine_tunes.list | grep fine_tuned_model获取微调后的模型名称。

创建一个配置文件gpt3.config.json,如下所示:

{"gpt_info": "curie:ft-xxxxxxxxxx", "gpt_truth": "curie:ft-xxxxxxxxxx", "api_key": "xxxxxxx"}

为GPT-3评估添加参数--do-rating --gpt3-config gpt3.config.json

基线

python tfqa_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8 --do-rating --gpt3-config /path/to/gpt3.config.json

DoLa

python tfqa_eval.py --model-name huggyllama/llama-7b --early-exit-layers 16,18,20,22,24,26,28,30,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-13b --early-exit-layers 20,22,24,26,28,30,32,34,36,38,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-30b --early-exit-layers 40,42,44,46,48,50,52,54,56,58,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-65b --early-exit-layers 60,62,64,66,68,70,72,74,76,78,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8 --do-rating --gpt3-config /path/to/gpt3.config.json

GSM8K

我们使用GSM8K训练集的随机抽样子集作为StrategyQA和GSM8K的验证集。可以在这里下载文件。

--data-path参数应该是:

  • 包含gsm8k_test.jsonl的文件夹,否则文件将自动下载到您指定的文件夹。
  • (仅适用于GSM8K)上面链接中可下载的gsm8k-train-sub.jsonl文件的路径。

基线

python gsm8k_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python gsm8k_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python gsm8k_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python gsm8k_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python gsm8k_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python gsm8k_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python gsm8k_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python gsm8k_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

StrategyQA

--data-path参数应该是包含strategyqa_train.json的文件夹,否则文件将自动下载到您指定的文件夹。

基线

python strqa_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python strqa_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python strqa_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python strqa_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python strqa_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python strqa_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python strqa_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python strqa_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

GPT-4评估(Vicuna问答基准)

在GPT-4评估中,我们需要来自FastChat的问题文件。在以下命令中,我们假设您的FastChat仓库路径为$fastchat

基线

python gpt4_judge_eval.py --model-name huggyllama/llama-7b --model-id llama-7b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 1 python gpt4_judge_eval.py --model-name huggyllama/llama-13b --model-id llama-13b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 2 python gpt4_judge_eval.py --model-name huggyllama/llama-30b --model-id llama-30b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 4 python gpt4_judge_eval.py --model-name huggyllama/llama-65b --model-id llama-65b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 8

DoLa

python gpt4_judge_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --model-id llama-7b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 1 python gpt4_judge_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --model-id llama-13b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 2 python gpt4_judge_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --model-id llama-30b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 4 python gpt4_judge_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --model-id llama-65b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 8

运行上述命令生成模型响应后,我们需要OpenAI API密钥来对不同解码结果的响应进行成对比较。

python $fastchat/eval/eval_gpt_review.py -q $fastchat/eval/table/question.jsonl -a output-answer-1.jsonl output-answer-2.jsonl -p $fastchat/eval/table/prompt.jsonl -r $fastchat/eval/table/reviewer.jsonl -o output-review-path.jsonl -k openai_api_key

有关GPT-4评估的更多详细信息,请查看vicuna-blog-eval

参考仓库

引用

DOI

如果我们的论文对您的工作有帮助,请引用它!

@article{chuang2023dola,
  title={DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models},
  author={Chuang, Yung-Sung and Xie, Yujia and Luo, Hongyin and Kim, Yoon and Glass, James and He, Pengcheng},
  journal={arXiv preprint arXiv:2309.03883},
  year={2023},
}

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多