DoLa

DoLa

对比层解码提升大语言模型事实性

DoLa是一种新型解码策略,通过对比大语言模型不同层输出来提高内容事实性。无需外部知识或额外微调,即可减少模型幻觉,提升TruthfulQA等任务表现。该方法利用模型事实知识的层级分布特性,为增强AI系统可靠性开辟新途径。

DoLa大语言模型解码策略事实性层对比Github开源项目

DoLa: 通过对比层改进大型语言模型的事实性解码

许可证: MIT Arxiv Hugging Face Transformers 推文 GitHub 星标

在 Colab 中打开

论文"DoLa: 通过对比层改进大型语言模型的事实性解码"的代码

论文链接: https://arxiv.org/abs/2309.03883 作者: Yung-Sung Chuang $^\dagger$, Yujia Xie $^\ddagger$, Hongyin Luo $^\dagger$, Yoon Kim $^\dagger$, James Glass $^\dagger$, Pengcheng He $^\ddagger$ $^\dagger$ 麻省理工学院, $^\ddagger$ 微软

概述

DoLa

尽管大型语言模型(LLMs)具有令人印象深刻的能力,但它们容易产生幻觉,即生成偏离预训练期间所见事实的内容。我们提出了一种简单的解码策略,用于减少预训练LLMs的幻觉,该策略无需依赖检索外部知识或额外的微调。我们的方法通过对比将后层与前层投射到词汇空间所得到的logits差异来获得下一个标记的分布,利用了LLMs中的事实知识通常局限于特定的transformer层这一特性。我们发现这种通过对比层进行解码(DoLA)的方法能够更好地呈现事实知识并减少不正确事实的生成。DoLA在多项选择任务和开放式生成任务中持续提高真实性,例如将LLaMA系列模型在TruthfulQA上的表现提高了12-17个百分点,展示了其在使LLMs可靠生成真实事实方面的潜力。

设置

pip install -e transformers-4.28.1
pip install datasets
pip install accelerate
pip install openai # -> 仅用于truthfulqa和gpt4_eval

实验

参数

参数示例描述
--model-namehuggyllama/llama-7b指定要使用的模型,目前我们只支持LLaMA-v1。
--data-path/path/to/dataset数据集文件或文件夹的路径。
--output-pathoutput-path.json存储输出结果的位置。
--num-gpus1要使用的GPU数量,7B/13B/30B/65B模型大小分别对应1/2/4/8
--max_gpu_memory27要分配的最大GPU内存大小(以GiB为单位)。默认值:27(适用于32G V100)。

理解 --early-exit-layers

--early-exit-layers参数接受一个字符串,其中包含一系列由逗号分隔的层数,之间没有空格。通过指定不同数量的层,我们可以使模型以不同的模式进行解码。

指定的层数示例(字符串)解码模式描述
1-1从最后一层输出进行朴素解码
216,32使用第二个指定的层(即32)作为mature_layer,第一个指定的层(即16)作为premature_layer进行DoLa-static解码
>20,2,4,6,8,10,12,14,32使用最后指定的层(即32)作为mature_layer,所有前面的层(即0,2,4,6,8,10,12,14)作为candidate_premature_layers进行DoLa解码

FACTOR (多项选择)

请从 https://github.com/AI21Labs/factor 下载数据文件 wiki_factor.csv

基线

python factor_eval.py --model-name huggyllama/llama-7b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 1 python factor_eval.py --model-name huggyllama/llama-13b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 2 python factor_eval.py --model-name huggyllama/llama-30b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 4 python factor_eval.py --model-name huggyllama/llama-65b --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 8

DoLa

python factor_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 1 python factor_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 2 python factor_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 4 python factor_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/wiki_factor.csv --output-path output-path.json --num-gpus 8

TruthfulQA (多项选择)

--data-path应该是一个包含TruthfulQA.csv的文件夹。如果文件不存在,将自动下载。

基线

python tfqa_mc_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python tfqa_mc_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python tfqa_mc_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python tfqa_mc_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python tfqa_mc_eval.py --model-name huggyllama/llama-7b --early-exit-layers 16,18,20,22,24,26,28,30,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python tfqa_mc_eval.py --model-name huggyllama/llama-13b --early-exit-layers 20,22,24,26,28,30,32,34,36,38,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python tfqa_mc_eval.py --model-name huggyllama/llama-30b --early-exit-layers 40,42,44,46,48,50,52,54,56,58,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python tfqa_mc_eval.py --model-name huggyllama/llama-65b --early-exit-layers 60,62,64,66,68,70,72,74,76,78,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

TruthfulQA

为了评估TruthfulQA的开放式生成结果,我们需要通过OpenAI API微调两个GPT-3 curie模型:

openai api fine_tunes.create -t finetune_truth.jsonl -m curie --n_epochs 5 --batch_size 21 --learning_rate_multiplier 0.1
openai api fine_tunes.create -t finetune_info.jsonl -m curie --n_epochs 5 --batch_size 21 --learning_rate_multiplier 0.1

微调后,我们可以通过openai api fine_tunes.list | grep fine_tuned_model获取微调后的模型名称。

创建一个配置文件gpt3.config.json,如下所示:

{"gpt_info": "curie:ft-xxxxxxxxxx", "gpt_truth": "curie:ft-xxxxxxxxxx", "api_key": "xxxxxxx"}

为GPT-3评估添加参数--do-rating --gpt3-config gpt3.config.json

基线

python tfqa_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8 --do-rating --gpt3-config /path/to/gpt3.config.json

DoLa

python tfqa_eval.py --model-name huggyllama/llama-7b --early-exit-layers 16,18,20,22,24,26,28,30,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-13b --early-exit-layers 20,22,24,26,28,30,32,34,36,38,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-30b --early-exit-layers 40,42,44,46,48,50,52,54,56,58,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 --do-rating --gpt3-config /path/to/gpt3.config.json python tfqa_eval.py --model-name huggyllama/llama-65b --early-exit-layers 60,62,64,66,68,70,72,74,76,78,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8 --do-rating --gpt3-config /path/to/gpt3.config.json

GSM8K

我们使用GSM8K训练集的随机抽样子集作为StrategyQA和GSM8K的验证集。可以在这里下载文件。

--data-path参数应该是:

  • 包含gsm8k_test.jsonl的文件夹,否则文件将自动下载到您指定的文件夹。
  • (仅适用于GSM8K)上面链接中可下载的gsm8k-train-sub.jsonl文件的路径。

基线

python gsm8k_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python gsm8k_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python gsm8k_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python gsm8k_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python gsm8k_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python gsm8k_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python gsm8k_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python gsm8k_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

StrategyQA

--data-path参数应该是包含strategyqa_train.json的文件夹,否则文件将自动下载到您指定的文件夹。

基线

python strqa_eval.py --model-name huggyllama/llama-7b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python strqa_eval.py --model-name huggyllama/llama-13b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python strqa_eval.py --model-name huggyllama/llama-30b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python strqa_eval.py --model-name huggyllama/llama-65b --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

DoLa

python strqa_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 1 python strqa_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 2 python strqa_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 4 python strqa_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --data-path /path/to/data/folder --output-path output-path.json --num-gpus 8

GPT-4评估(Vicuna问答基准)

在GPT-4评估中,我们需要来自FastChat的问题文件。在以下命令中,我们假设您的FastChat仓库路径为$fastchat

基线

python gpt4_judge_eval.py --model-name huggyllama/llama-7b --model-id llama-7b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 1 python gpt4_judge_eval.py --model-name huggyllama/llama-13b --model-id llama-13b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 2 python gpt4_judge_eval.py --model-name huggyllama/llama-30b --model-id llama-30b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 4 python gpt4_judge_eval.py --model-name huggyllama/llama-65b --model-id llama-65b-baseline --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 8

DoLa

python gpt4_judge_eval.py --model-name huggyllama/llama-7b --early-exit-layers 0,2,4,6,8,10,12,14,32 --model-id llama-7b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 1 python gpt4_judge_eval.py --model-name huggyllama/llama-13b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,40 --model-id llama-13b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 2 python gpt4_judge_eval.py --model-name huggyllama/llama-30b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,60 --model-id llama-30b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 4 python gpt4_judge_eval.py --model-name huggyllama/llama-65b --early-exit-layers 0,2,4,6,8,10,12,14,16,18,80 --model-id llama-65b-dola --question-file $fastchat/eval/table/question.jsonl --answer-file output-answer.jsonl --num-gpus 8

运行上述命令生成模型响应后,我们需要OpenAI API密钥来对不同解码结果的响应进行成对比较。

python $fastchat/eval/eval_gpt_review.py -q $fastchat/eval/table/question.jsonl -a output-answer-1.jsonl output-answer-2.jsonl -p $fastchat/eval/table/prompt.jsonl -r $fastchat/eval/table/reviewer.jsonl -o output-review-path.jsonl -k openai_api_key

有关GPT-4评估的更多详细信息,请查看vicuna-blog-eval

参考仓库

引用

DOI

如果我们的论文对您的工作有帮助,请引用它!

@article{chuang2023dola,
  title={DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models},
  author={Chuang, Yung-Sung and Xie, Yujia and Luo, Hongyin and Kim, Yoon and Glass, James and He, Pengcheng},
  journal={arXiv preprint arXiv:2309.03883},
  year={2023},
}

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多