
提示工程研究自动化分析平台
The Prompt Report项目代码仓库提供自动化论文分析工具,用于构建提示(prompt)的结构化理解。该项目实现了论文自动审查、数据采集和实验执行,并建立了完整的提示技术分类体系。代码库包含安装指南、API配置说明和运行步骤,为生成式AI系统中的提示工程研究提供支持。项目还提供了相关数据集和研究论文链接,方便研究人员深入了解。代码结构清晰,包括论文下载、数据处理和实验模块,便于扩展和定制化研究。
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area’s nascency. This repository is the code for The Prompt Report, our research that establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. This code allows for the automated review of papers, the collection of data, and the running of experiments. Our dataset is available on Hugging Face and our paper is available on ArXiv.org. Information is also available on our website.
after cloning, run pip install -r requirements.txt from root
Make a file at root called .env.
For OpenAI: https://platform.openai.com/docs/quickstart <br>
For Hugging Face: https://huggingface.co/docs/hub/security-tokens, also run huggingface-cli login <br>
For Sematic Scholar: https://www.semanticscholar.org/product/api#api-key <br>
Use the reference example.env file to fill in your API keys/tokens.
OPENAI_API_KEY=sk.-...
SEMANTIC_SCHOLAR_API_KEY=...
HF_TOKEN=...
Then to load the .env file, type: <br>
pip install pytest-dotenv
You can also choose to update the env file by doing: <br>
py.test --envfile path/to/.env
In the case that you have several .env files, create a new env_files in the pytest config folder and type:
env_files =
.env
.test.env
.deploy.env
The script main.py calls the necessary functions to download all the papers, deduplicate and filter them, and then run all the experiments.
The core of the repository is in src/prompt_systematic_review. The config_data.py script contains configurations that are important for running experiments and saving time. You can see in main.py how some of these options are used.
The source folder is divided into 4 main sections: 3 scripts (automated_review.py, collect_papers.py,config_data.py) that deal with collecting the data and running the automated review, the utils folder that contains utility functions that are used throughout the repository, the get_papers folder that contains the scripts to download the papers, and the experiments folder that contains the scripts to run the experiments.
At the root, there is a data folder. It comes pre-loaded with some data that is used for the experiments, however the bulk of the dataset can either be generated by running main.py or by downloading the data from Hugging Face. It is in data/experiments_output that the results of the experiments are saved.
Notably, the keywords used in the automated review/scraping process are in src/prompt_systematic_review/utils/keywords.py. Anyone who wishes to run the automated review can adjust these keywords to their liking in that file.
git clone https://github.com/trigaten/Prompt_Systematic_Review.git && cd Prompt_Systematic_Review pip install -r requirements.txt # create a .env file with your API keys nano .env git lfs install git clone https://huggingface.co/datasets/PromptSystematicReview/ThePromptReport mv ThePromptReport/* data/ python main.py
Running main.py will download the papers, run the automated review, and run the experiments.
However, if you wish to save time and only run the experiments, you can download the data from Hugging Face and move the papers folder and all the csv files in the dataset into the data folder (should look like data/papers/*.pdf and data/master_papers.csv etc). Adjust main.py accordingly.
Every experiment script has a run_experiment function that is called in main.py. The run_experiment function is responsible for running the experiment and saving the results. However each script can be run individually by just running python src/prompt_systematic_review/experiments/<experiment_name>.py from root.
There is one experiment, graph_internal_references that, because of weird issues with parallelism, is better run from root as an individual script. To avoid it causing issues with other experiments, it is run last as it is ordered at the bottom of the list in experiments/__init__.py.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码, 轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号