The_Prompt_Report

The_Prompt_Report

提示工程研究自动化分析平台

The Prompt Report项目代码仓库提供自动化论文分析工具,用于构建提示(prompt)的结构化理解。该项目实现了论文自动审查、数据采集和实验执行,并建立了完整的提示技术分类体系。代码库包含安装指南、API配置说明和运行步骤,为生成式AI系统中的提示工程研究提供支持。项目还提供了相关数据集和研究论文链接,方便研究人员深入了解。代码结构清晰,包括论文下载、数据处理和实验模块,便于扩展和定制化研究。

PromptGenAI人工智能论文研究数据集Github开源项目

The Prompt Report Code Repository

Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area’s nascency. This repository is the code for The Prompt Report, our research that establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. This code allows for the automated review of papers, the collection of data, and the running of experiments. Our dataset is available on Hugging Face and our paper is available on ArXiv.org. Information is also available on our website.

Table of Contents

Install requirements

after cloning, run pip install -r requirements.txt from root

Setting up API keys

Make a file at root called .env.

For OpenAI: https://platform.openai.com/docs/quickstart <br> For Hugging Face: https://huggingface.co/docs/hub/security-tokens, also run huggingface-cli login <br> For Sematic Scholar: https://www.semanticscholar.org/product/api#api-key <br>

Use the reference example.env file to fill in your API keys/tokens.

OPENAI_API_KEY=sk.-...
SEMANTIC_SCHOLAR_API_KEY=...
HF_TOKEN=...

Setting up keys for running tests

Then to load the .env file, type: <br> pip install pytest-dotenv

You can also choose to update the env file by doing: <br> py.test --envfile path/to/.env

In the case that you have several .env files, create a new env_files in the pytest config folder and type:

env_files =
.env
.test.env
.deploy.env

Structure of the Repository

The script main.py calls the necessary functions to download all the papers, deduplicate and filter them, and then run all the experiments.

The core of the repository is in src/prompt_systematic_review. The config_data.py script contains configurations that are important for running experiments and saving time. You can see in main.py how some of these options are used.

The source folder is divided into 4 main sections: 3 scripts (automated_review.py, collect_papers.py,config_data.py) that deal with collecting the data and running the automated review, the utils folder that contains utility functions that are used throughout the repository, the get_papers folder that contains the scripts to download the papers, and the experiments folder that contains the scripts to run the experiments.

At the root, there is a data folder. It comes pre-loaded with some data that is used for the experiments, however the bulk of the dataset can either be generated by running main.py or by downloading the data from Hugging Face. It is in data/experiments_output that the results of the experiments are saved.

Notably, the keywords used in the automated review/scraping process are in src/prompt_systematic_review/utils/keywords.py. Anyone who wishes to run the automated review can adjust these keywords to their liking in that file.

Running the code

TLDR;

git clone https://github.com/trigaten/Prompt_Systematic_Review.git && cd Prompt_Systematic_Review pip install -r requirements.txt # create a .env file with your API keys nano .env git lfs install git clone https://huggingface.co/datasets/PromptSystematicReview/ThePromptReport mv ThePromptReport/* data/ python main.py

Running main.py will download the papers, run the automated review, and run the experiments. However, if you wish to save time and only run the experiments, you can download the data from Hugging Face and move the papers folder and all the csv files in the dataset into the data folder (should look like data/papers/*.pdf and data/master_papers.csv etc). Adjust main.py accordingly.

Every experiment script has a run_experiment function that is called in main.py. The run_experiment function is responsible for running the experiment and saving the results. However each script can be run individually by just running python src/prompt_systematic_review/experiments/<experiment_name>.py from root.

There is one experiment, graph_internal_references that, because of weird issues with parallelism, is better run from root as an individual script. To avoid it causing issues with other experiments, it is run last as it is ordered at the bottom of the list in experiments/__init__.py.

Notes

  • Sometimes a paper title may appear differently on the arXiv API. For example, "Visual Attention-Prompted Prediction and Learning" (arXiv:2310.08420), according to arXiv API is titled "A visual encoding model based on deep neural networks and transfer learning"

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多