<img src="https://static.pepy.tech/badge/twitter-api-client"/>
<img src="https://static.pepy.tech/badge/twitter-api-client/month"/>
pip install twitter-api-client -U
As of Fall 2023 login by username/password is unstable. Using cookies is now recommended.
from twitter.account import Account ## sign-in with credentials email, username, password = ..., ..., ... account = Account(email, username, password) ## or, resume session using cookies # account = Account(cookies={"ct0": ..., "auth_token": ...}) ## or, resume session using cookies (JSON file) # account = Account(cookies='twitter.cookies') account.tweet('test 123') account.untweet(123456) account.retweet(123456) account.unretweet(123456) account.reply('foo', tweet_id=123456) account.quote('bar', tweet_id=123456) account.schedule_tweet('schedule foo', 1681851240) account.unschedule_tweet(123456) account.tweet('hello world', media=[ {'media': 'test.jpg', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.jpeg', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.png', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.jfif', 'alt': 'some alt text', 'tagged_users': [123]}, ]) account.schedule_tweet('foo bar', '2023-04-18 15:42', media=[ {'media': 'test.gif', 'alt': 'some alt text'}, ]) account.schedule_reply('hello world', '2023-04-19 15:42', tweet_id=123456, media=[ {'media': 'test.gif', 'alt': 'some alt text'}, ]) account.dm('my message', [1234], media='test.jpg') account.create_poll('test poll 123', ['hello', 'world', 'foo', 'bar'], 10080) # tweets account.like(123456) account.unlike(123456) account.bookmark(123456) account.unbookmark(123456) account.pin(123456) account.unpin(123456) # users account.follow(1234) account.unfollow(1234) account.mute(1234) account.unmute(1234) account.enable_follower_notifications(1234) account.disable_follower_notifications(1234) account.block(1234) account.unblock(1234) # user profile account.update_profile_image('test.jpg') account.update_profile_banner('test.png') account.update_profile_info(name='Foo Bar', description='test 123', location='Victoria, BC') # topics account.follow_topic(111) account.unfollow_topic(111) # lists account.create_list('My List', 'description of my list', private=False) account.update_list(222, 'My Updated List', 'some updated description', private=False) account.update_list_banner(222, 'test.png') account.delete_list_banner(222) account.add_list_member(222, 1234) account.remove_list_member(222, 1234) account.delete_list(222) account.pin_list(222) account.unpin_list(222) # refresh all pinned lists in this order account.update_pinned_lists([222, 111, 333]) # unpin all lists account.update_pinned_lists([]) # get timelines timeline = account.home_timeline() latest_timeline = account.home_latest_timeline(limit=500) # get bookmarks bookmarks = account.bookmarks() # get DM inbox metadata inbox = account.dm_inbox() # get DMs from all conversations dms = account.dm_history() # get DMs from specific conversations dms = account.dm_history(['123456-789012', '345678-901234']) # search DMs by keyword dms = account.dm_search('test123') # delete entire conversation account.dm_delete(conversation_id='123456-789012') # delete (hide) specific DM account.dm_delete(message_id='123456') # get all scheduled tweets scheduled_tweets = account.scheduled_tweets() # delete a scheduled tweet account.delete_scheduled_tweet(12345678) # get all draft tweets draft_tweets = account.draft_tweets() # delete a draft tweet account.delete_draft_tweet(12345678) # delete all scheduled tweets account.clear_scheduled_tweets() # delete all draft tweets account.clear_draft_tweets() # example configuration account.update_settings({ "address_book_live_sync_enabled": False, "allow_ads_personalization": False, "allow_authenticated_periscope_requests": True, "allow_dm_groups_from": "following", "allow_dms_from": "following", "allow_location_history_personalization": False, "allow_logged_out_device_personalization": False, "allow_media_tagging": "none", "allow_sharing_data_for_third_party_personalization": False, "alt_text_compose_enabled": None, "always_use_https": True, "autoplay_disabled": False, "country_code": "us", "discoverable_by_email": False, "discoverable_by_mobile_phone": False, "display_sensitive_media": False, "dm_quality_filter": "enabled", "dm_receipt_setting": "all_disabled", "geo_enabled": False, "include_alt_text_compose": True, "include_mention_filter": True, "include_nsfw_admin_flag": True, "include_nsfw_user_flag": True, "include_ranked_timeline": True, "language": "en", "mention_filter": "unfiltered", "nsfw_admin": False, "nsfw_user": False, "personalized_trends": True, "protected": False, "ranked_timeline_eligible": None, "ranked_timeline_setting": None, "require_password_login": False, "requires_login_verification": False, "sleep_time": { "enabled": False, "end_time": None, "start_time": None }, "translator_type": "none", "universal_quality_filtering_enabled": "enabled", "use_cookie_personalization": False, }) # example configuration account.update_search_settings({ "optInFiltering": True, # filter nsfw content "optInBlocking": True, # filter blocked accounts }) notifications = account.notifications() account.change_password('old pwd','new pwd')
Two special batch queries scraper.tweets_by_ids
and scraper.users_by_ids
should be preferred when applicable. These endpoints are more much more efficient and have higher rate limits than their unbatched counterparts. See the table below for a comparison.
Endpoint | Batch Size | Rate Limit |
---|---|---|
tweets_by_ids | ~220 | 500 / 15 mins |
tweets_by_id | 1 | 50 / 15 mins |
users_by_ids | ~220 | 100 / 15 mins |
users_by_id | 1 | 500 / 15 mins |
As of Fall 2023 login by username/password is unstable. Using cookies is now recommended.
from twitter.scraper import Scraper ## sign-in with credentials email, username, password = ..., ..., ... scraper = Scraper(email, username, password) ## or, resume session using cookies # scraper = Scraper(cookies={"ct0": ..., "auth_token": ...}) ## or, resume session using cookies (JSON file) # scraper = Scraper(cookies='twitter.cookies') ## or, initialize guest session (limited endpoints) # from twitter.util import init_session # scraper = Scraper(session=init_session()) # user data users = scraper.users(['foo', 'bar', 'hello', 'world']) users = scraper.users_by_ids([123, 234, 345]) # preferred users = scraper.users_by_id([123, 234, 345]) tweets = scraper.tweets([123, 234, 345]) likes = scraper.likes([123, 234, 345]) tweets_and_replies = scraper.tweets_and_replies([123, 234, 345]) media = scraper.media([123, 234, 345]) following = scraper.following([123, 234, 345]) followers = scraper.followers([123, 234, 345]) scraper.tweet_stats([111111, 222222, 333333]) # get recommended users based on user scraper.recommended_users() scraper.recommended_users([123]) # tweet data tweets = scraper.tweets_by_ids([987, 876, 754]) # preferred tweets = scraper.tweets_by_id([987, 876, 754]) tweet_details = scraper.tweets_details([987, 876, 754]) retweeters = scraper.retweeters([987, 876, 754]) favoriters = scraper.favoriters([987, 876, 754]) scraper.download_media([ 111111, 222222, 333333, 444444, ]) # trends scraper.trends()
Pagination is already done by default, however there are circumstances where you may need to resume pagination from
a specific cursor. For example, the Followers
endpoint only allows for 50 requests every 15 minutes. In this case, we
can resume from where we left off by providing a specific cursor value.
from twitter.scraper import Scraper email, username, password = ..., ..., ... scraper = Scraper(email, username, password) user_id = 44196397 cursor = '1767341853908517597|1663601806447476672' # example cursor limit = 100 # arbitrary limit for demonstration follower_subset, last_cursor = scraper.followers([user_id], limit=limit, cursor=cursor) # use last_cursor to resume pagination
from twitter.search import Search email, username, password = ..., ..., ... # default output directory is `data/search_results` if save=True search = Search(email, username, password, save=True, debug=1) res = search.run( limit=37, retries=5, queries=[ { 'category': 'Top', 'query': 'paperswithcode -tensorflow -tf' }, { 'category': 'Latest', 'query': 'test' }, { 'category': 'People', 'query': 'brasil portugal -argentina' }, { 'category': 'Photos', 'query': 'greece' }, { 'category': 'Videos', 'query': 'italy' }, ], )
Search Operators Reference
https://developer.twitter.com/en/docs/twitter-api/v1/rules-and-filtering/search-operators
https://developer.twitter.com/en/docs/twitter-api/tweets/search/integrate/build-a-query
Capture live audio for up to 500 streams per IP
from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) rooms = [...] scraper.spaces_live(rooms=rooms) # capture live audio from list of rooms
Raw transcript chunks
from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # room must be live, i.e. in "Running" state scraper.space_live_transcript('1zqKVPlQNApJB', frequency=2) # word-level live transcript. (dirty, on-the-fly transcription before post-processing)
Processed (final) transcript chunks
from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # room must be live, i.e. in "Running" state scraper.space_live_transcript('1zqKVPlQNApJB', frequency=1) # finalized live transcript. (clean)
from twitter.scraper import Scraper from twitter.util import init_session from twitter.constants import SpaceCategory session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # download audio and chat-log from space spaces = scraper.spaces(rooms=['1eaJbrAPnBVJX', '1eaJbrAlZjjJX'], audio=True, chat=True) # pull metadata only spaces = scraper.spaces(rooms=['1eaJbrAPnBVJX', '1eaJbrAlZjjJX']) # search for spaces in "Upcoming", "Top" and "Live" categories spaces = scraper.spaces(search=[ { 'filter': SpaceCategory.Upcoming, 'query': 'hello' }, { 'filter': SpaceCategory.Top, 'query': 'world' }, { 'filter': SpaceCategory.Live, 'query': 'foo bar' } ])
This requires installation of the proton-api-client package
To set up automated email confirmation/verification solvers, add your Proton Mail credentials below as shown.
This removes the need to manually solve email challenges via the web app. These credentials can be used
in Scraper
, Account
, and Search
constructors.
E.g.
from twitter.account import Account from twitter.util import get_code from proton.client import ProtonMail proton_username, proton_password = ..., ... proton = lambda: get_code(ProtonMail(proton_username, proton_password)) email, username, password = ..., ..., ... account = Account(email, username, password, proton=proton)
{ "entryId": "homeConversation-1648726807301218305-1648801924760711169-1648811419998228480", "sortIndex": "1648811419998228480", "content": { "entryType": "TimelineTimelineModule", "__typename": "TimelineTimelineModule", "items": [ { "entryId": "homeConversation-1648811419998228480-0-tweet-1648726807301218305", "dispensable": true, "item": { "itemContent": { "itemType": "TimelineTweet", "__typename": "TimelineTweet", "tweet_results": { "result": { "__typename": "Tweet", "rest_id": "1648726807301218305", "has_birdwatch_notes": false, "core": { "user_results": { "result": { "__typename": "User", "id": "VXNlcjozMzgzNjYyOQ==", "rest_id": "33836629", "affiliates_highlighted_label": {}, "has_graduated_access": true, "is_blue_verified": true, "profile_image_shape": "Circle", "legacy": { "can_dm": false, "can_media_tag": true, "created_at": "Tue Apr 21 06:49:15 +0000 2009", "default_profile": false, "default_profile_image": false, "description": "Building a kind of JARVIS @ OреոΑӏ. Previously Director of AI @ Tesla, CS231n, PhD @ Stanford. I like to train large deep neural nets 🧠🤖💥", "entities": { "description": { "urls": [] }, "url": { "urls": [ { "display_url": "karpathy.ai", "expanded_url": "https://karpathy.ai", "url": "https://t.co/0EcFthjJXM", "indices": [ 0, 23 ] } ] } }, "fast_followers_count": 0, "favourites_count": 7312, "followers_count": 701921, "friends_count": 809, "has_custom_timelines": true, "is_translator": false, "listed_count": 9207, "location": "Stanford", "media_count": 633, "name": "Andrej Karpathy",
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个 知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号