<img src="https://static.pepy.tech/badge/twitter-api-client"/>
<img src="https://static.pepy.tech/badge/twitter-api-client/month"/>
pip install twitter-api-client -U

As of Fall 2023 login by username/password is unstable. Using cookies is now recommended.
from twitter.account import Account ## sign-in with credentials email, username, password = ..., ..., ... account = Account(email, username, password) ## or, resume session using cookies # account = Account(cookies={"ct0": ..., "auth_token": ...}) ## or, resume session using cookies (JSON file) # account = Account(cookies='twitter.cookies') account.tweet('test 123') account.untweet(123456) account.retweet(123456) account.unretweet(123456) account.reply('foo', tweet_id=123456) account.quote('bar', tweet_id=123456) account.schedule_tweet('schedule foo', 1681851240) account.unschedule_tweet(123456) account.tweet('hello world', media=[ {'media': 'test.jpg', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.jpeg', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.png', 'alt': 'some alt text', 'tagged_users': [123]}, {'media': 'test.jfif', 'alt': 'some alt text', 'tagged_users': [123]}, ]) account.schedule_tweet('foo bar', '2023-04-18 15:42', media=[ {'media': 'test.gif', 'alt': 'some alt text'}, ]) account.schedule_reply('hello world', '2023-04-19 15:42', tweet_id=123456, media=[ {'media': 'test.gif', 'alt': 'some alt text'}, ]) account.dm('my message', [1234], media='test.jpg') account.create_poll('test poll 123', ['hello', 'world', 'foo', 'bar'], 10080) # tweets account.like(123456) account.unlike(123456) account.bookmark(123456) account.unbookmark(123456) account.pin(123456) account.unpin(123456) # users account.follow(1234) account.unfollow(1234) account.mute(1234) account.unmute(1234) account.enable_follower_notifications(1234) account.disable_follower_notifications(1234) account.block(1234) account.unblock(1234) # user profile account.update_profile_image('test.jpg') account.update_profile_banner('test.png') account.update_profile_info(name='Foo Bar', description='test 123', location='Victoria, BC') # topics account.follow_topic(111) account.unfollow_topic(111) # lists account.create_list('My List', 'description of my list', private=False) account.update_list(222, 'My Updated List', 'some updated description', private=False) account.update_list_banner(222, 'test.png') account.delete_list_banner(222) account.add_list_member(222, 1234) account.remove_list_member(222, 1234) account.delete_list(222) account.pin_list(222) account.unpin_list(222) # refresh all pinned lists in this order account.update_pinned_lists([222, 111, 333]) # unpin all lists account.update_pinned_lists([]) # get timelines timeline = account.home_timeline() latest_timeline = account.home_latest_timeline(limit=500) # get bookmarks bookmarks = account.bookmarks() # get DM inbox metadata inbox = account.dm_inbox() # get DMs from all conversations dms = account.dm_history() # get DMs from specific conversations dms = account.dm_history(['123456-789012', '345678-901234']) # search DMs by keyword dms = account.dm_search('test123') # delete entire conversation account.dm_delete(conversation_id='123456-789012') # delete (hide) specific DM account.dm_delete(message_id='123456') # get all scheduled tweets scheduled_tweets = account.scheduled_tweets() # delete a scheduled tweet account.delete_scheduled_tweet(12345678) # get all draft tweets draft_tweets = account.draft_tweets() # delete a draft tweet account.delete_draft_tweet(12345678) # delete all scheduled tweets account.clear_scheduled_tweets() # delete all draft tweets account.clear_draft_tweets() # example configuration account.update_settings({ "address_book_live_sync_enabled": False, "allow_ads_personalization": False, "allow_authenticated_periscope_requests": True, "allow_dm_groups_from": "following", "allow_dms_from": "following", "allow_location_history_personalization": False, "allow_logged_out_device_personalization": False, "allow_media_tagging": "none", "allow_sharing_data_for_third_party_personalization": False, "alt_text_compose_enabled": None, "always_use_https": True, "autoplay_disabled": False, "country_code": "us", "discoverable_by_email": False, "discoverable_by_mobile_phone": False, "display_sensitive_media": False, "dm_quality_filter": "enabled", "dm_receipt_setting": "all_disabled", "geo_enabled": False, "include_alt_text_compose": True, "include_mention_filter": True, "include_nsfw_admin_flag": True, "include_nsfw_user_flag": True, "include_ranked_timeline": True, "language": "en", "mention_filter": "unfiltered", "nsfw_admin": False, "nsfw_user": False, "personalized_trends": True, "protected": False, "ranked_timeline_eligible": None, "ranked_timeline_setting": None, "require_password_login": False, "requires_login_verification": False, "sleep_time": { "enabled": False, "end_time": None, "start_time": None }, "translator_type": "none", "universal_quality_filtering_enabled": "enabled", "use_cookie_personalization": False, }) # example configuration account.update_search_settings({ "optInFiltering": True, # filter nsfw content "optInBlocking": True, # filter blocked accounts }) notifications = account.notifications() account.change_password('old pwd','new pwd')
Two special batch queries scraper.tweets_by_ids and scraper.users_by_ids should be preferred when applicable. These endpoints are more much more efficient and have higher rate limits than their unbatched counterparts. See the table below for a comparison.
| Endpoint | Batch Size | Rate Limit |
|---|---|---|
| tweets_by_ids | ~220 | 500 / 15 mins |
| tweets_by_id | 1 | 50 / 15 mins |
| users_by_ids | ~220 | 100 / 15 mins |
| users_by_id | 1 | 500 / 15 mins |

As of Fall 2023 login by username/password is unstable. Using cookies is now recommended.
from twitter.scraper import Scraper ## sign-in with credentials email, username, password = ..., ..., ... scraper = Scraper(email, username, password) ## or, resume session using cookies # scraper = Scraper(cookies={"ct0": ..., "auth_token": ...}) ## or, resume session using cookies (JSON file) # scraper = Scraper(cookies='twitter.cookies') ## or, initialize guest session (limited endpoints) # from twitter.util import init_session # scraper = Scraper(session=init_session()) # user data users = scraper.users(['foo', 'bar', 'hello', 'world']) users = scraper.users_by_ids([123, 234, 345]) # preferred users = scraper.users_by_id([123, 234, 345]) tweets = scraper.tweets([123, 234, 345]) likes = scraper.likes([123, 234, 345]) tweets_and_replies = scraper.tweets_and_replies([123, 234, 345]) media = scraper.media([123, 234, 345]) following = scraper.following([123, 234, 345]) followers = scraper.followers([123, 234, 345]) scraper.tweet_stats([111111, 222222, 333333]) # get recommended users based on user scraper.recommended_users() scraper.recommended_users([123]) # tweet data tweets = scraper.tweets_by_ids([987, 876, 754]) # preferred tweets = scraper.tweets_by_id([987, 876, 754]) tweet_details = scraper.tweets_details([987, 876, 754]) retweeters = scraper.retweeters([987, 876, 754]) favoriters = scraper.favoriters([987, 876, 754]) scraper.download_media([ 111111, 222222, 333333, 444444, ]) # trends scraper.trends()
Pagination is already done by default, however there are circumstances where you may need to resume pagination from
a specific cursor. For example, the Followers endpoint only allows for 50 requests every 15 minutes. In this case, we
can resume from where we left off by providing a specific cursor value.
from twitter.scraper import Scraper email, username, password = ..., ..., ... scraper = Scraper(email, username, password) user_id = 44196397 cursor = '1767341853908517597|1663601806447476672' # example cursor limit = 100 # arbitrary limit for demonstration follower_subset, last_cursor = scraper.followers([user_id], limit=limit, cursor=cursor) # use last_cursor to resume pagination

from twitter.search import Search email, username, password = ..., ..., ... # default output directory is `data/search_results` if save=True search = Search(email, username, password, save=True, debug=1) res = search.run( limit=37, retries=5, queries=[ { 'category': 'Top', 'query': 'paperswithcode -tensorflow -tf' }, { 'category': 'Latest', 'query': 'test' }, { 'category': 'People', 'query': 'brasil portugal -argentina' }, { 'category': 'Photos', 'query': 'greece' }, { 'category': 'Videos', 'query': 'italy' }, ], )
Search Operators Reference
https://developer.twitter.com/en/docs/twitter-api/v1/rules-and-filtering/search-operators
https://developer.twitter.com/en/docs/twitter-api/tweets/search/integrate/build-a-query
Capture live audio for up to 500 streams per IP

from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) rooms = [...] scraper.spaces_live(rooms=rooms) # capture live audio from list of rooms
Raw transcript chunks

from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # room must be live, i.e. in "Running" state scraper.space_live_transcript('1zqKVPlQNApJB', frequency=2) # word-level live transcript. (dirty, on-the-fly transcription before post-processing)
Processed (final) transcript chunks

from twitter.scraper import Scraper from twitter.util import init_session session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # room must be live, i.e. in "Running" state scraper.space_live_transcript('1zqKVPlQNApJB', frequency=1) # finalized live transcript. (clean)
from twitter.scraper import Scraper from twitter.util import init_session from twitter.constants import SpaceCategory session = init_session() # initialize guest session, no login required scraper = Scraper(session=session) # download audio and chat-log from space spaces = scraper.spaces(rooms=['1eaJbrAPnBVJX', '1eaJbrAlZjjJX'], audio=True, chat=True) # pull metadata only spaces = scraper.spaces(rooms=['1eaJbrAPnBVJX', '1eaJbrAlZjjJX']) # search for spaces in "Upcoming", "Top" and "Live" categories spaces = scraper.spaces(search=[ { 'filter': SpaceCategory.Upcoming, 'query': 'hello' }, { 'filter': SpaceCategory.Top, 'query': 'world' }, { 'filter': SpaceCategory.Live, 'query': 'foo bar' } ])
This requires installation of the proton-api-client package
To set up automated email confirmation/verification solvers, add your Proton Mail credentials below as shown.
This removes the need to manually solve email challenges via the web app. These credentials can be used
in Scraper, Account, and Search constructors.
E.g.
from twitter.account import Account from twitter.util import get_code from proton.client import ProtonMail proton_username, proton_password = ..., ... proton = lambda: get_code(ProtonMail(proton_username, proton_password)) email, username, password = ..., ..., ... account = Account(email, username, password, proton=proton)
{ "entryId": "homeConversation-1648726807301218305-1648801924760711169-1648811419998228480", "sortIndex": "1648811419998228480", "content": { "entryType": "TimelineTimelineModule", "__typename": "TimelineTimelineModule", "items": [ { "entryId": "homeConversation-1648811419998228480-0-tweet-1648726807301218305", "dispensable": true, "item": { "itemContent": { "itemType": "TimelineTweet", "__typename": "TimelineTweet", "tweet_results": { "result": { "__typename": "Tweet", "rest_id": "1648726807301218305", "has_birdwatch_notes": false, "core": { "user_results": { "result": { "__typename": "User", "id": "VXNlcjozMzgzNjYyOQ==", "rest_id": "33836629", "affiliates_highlighted_label": {}, "has_graduated_access": true, "is_blue_verified": true, "profile_image_shape": "Circle", "legacy": { "can_dm": false, "can_media_tag": true, "created_at": "Tue Apr 21 06:49:15 +0000 2009", "default_profile": false, "default_profile_image": false, "description": "Building a kind of JARVIS @ OреոΑӏ. Previously Director of AI @ Tesla, CS231n, PhD @ Stanford. I like to train large deep neural nets 🧠🤖💥", "entities": { "description": { "urls": [] }, "url": { "urls": [ { "display_url": "karpathy.ai", "expanded_url": "https://karpathy.ai", "url": "https://t.co/0EcFthjJXM", "indices": [ 0, 23 ] } ] } }, "fast_followers_count": 0, "favourites_count": 7312, "followers_count": 701921, "friends_count": 809, "has_custom_timelines": true, "is_translator": false, "listed_count": 9207, "location": "Stanford", "media_count": 633, "name": "Andrej Karpathy",


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作 品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号